04What is Wi Fi

Information about 04What is Wi Fi

Published on February 4, 2008

Author: Reinardo

Source: authorstream.com

Content

Wi-Fi:  Wi-Fi Wireless Communications Sheldon Lou What is Wi-Fi?:  What is Wi-Fi? The standard for wireless local area networks (WLANs). It’s like a common language that all the devices use to communicate to each other. If you have a standard, people can make all sorts of devices that can work with each other. It’s actually IEEE 802.11, a family of standards. The IEEE (Eye-triple-E, Institute of Electrical and Electronics Engineers Inc.) is a non-profit, technical professional association of more than 360,000 individual members in approximately 175 countries. The Wireless Ethernet Compatibility Alliance started the Wi-Fi--wireless fidelity--certification program to ensure that equipment claiming 802.11 compliance was genuinely interoperable. US Frequency Bands:  US Frequency Bands Band Frequency range UHF ISM 902-928 MHz S-Band 2-4 GHz S-Band ISM 2.4-2.5 GHz C-Band 4-8 GHz C-Band satellite downlink 3.7-4.2 GHz C-Band Radar (weather) 5.25-5.925 GHz C-Band ISM 5.725-5.875 GHz C-Band satellite uplink 5.925-6.425 GHz X-Band 8-12 GHz X-Band Radar (police/weather) 8.5-10.55 GHz Wi-Fi Standards:  Wi-Fi Standards Standard Speed Freq band Notes 802.11 2 Mbps 2.4 GHz (1997) 802.11a 54 Mbps 5 GHz (1999) 802.11b 11 Mbps 2.4 GHz 802.11g 54 Mbps 2.4 GHz ISM Band:  ISM Band ISM stands for industrial, scientific, and medical. ISM bands are set aside for equipment that is related to industrial or scientific processes or is used by medical equipment. Perhaps the most familiar ISM-band device is the microwave oven, which operates in the 2.4-GHz ISM band. The ISM bands are license-free, provided that devices are low-power. You don't need a license to set up and operate a wireless network. Wireless LAN Networks:  Wireless LAN Networks WLAN Architecture—Ad Hoc Mode:  WLAN Architecture—Ad Hoc Mode Ad-Hoc mode: Peer-to-peer setup where clients can connect to each other directly. Generally not used for business networks. Ad Hoc Structure:  Ad Hoc Structure Mobile stations communicate to each other directly. It’s set up for a special purpose and for a short period of time. For example, the participants of a meeting in a conference room may create an ad hoc network at the beginning of the meeting and dissolve it when the meeting ends. WLAN Architecture--Mesh:  WLAN Architecture--Mesh Mesh: Every client in the network also acts as an access or relay point, creating a “self-healing” and (in theory) infinitely extensible network. Not yet in widespread use, unlikely to be in homes. WLAN Architecture—Infrastructure Mode:  WLAN Architecture—Infrastructure Mode To Wired Network Infrastructure network:  Infrastructure network There is an Access Point (AP), which becomes the hub of a “star topology.” Any communication has to go through AP. If a Mobile Station (MS), like a computer, a PDA, or a phone, wants to communicate with another MS, it needs to send the information to AP first, then AP sends it to the destination MS Multiple APs can be connected together and handle a large number of clients. Used by the majority of WLANs in homes and businesses. Comparison of Two Structures:  Comparison of Two Structures Infrastructure Ad hoc Expansion X Flexibility X Control X Routing X Coverage X Reliability X Extended Service Area:  Extended Service Area Antennas:  Antennas All WLAN equipment comes with a built-in omni-directional antenna, but some select products will let you attach secondary antennas that will significantly boost range. Antennas, continued:  Antennas, continued Antennas come in all shapes and styles: Omni-directional: Vertical Whip Ceiling mount Directional: Yagi (“Pringles can”) Wall mounted panel Parabolic dish How Can Several Users Communicate Simultaneously?:  How Can Several Users Communicate Simultaneously? As we have discussed, there is a difference between a network designed for voice conversation and one for data exchange. For voice conversations, like telephone and cell phone calls, each person has a dedicated channel during the entire conversation. (3G and 4G cell phones are somewhat different, as we will explain later.) For data exchange, many users can share one channel. A user sends information when no one else is sending. New technologies try to accommodate both voice and data transmissions, as we will discuss in this course. Share one channel in data communication:  Share one channel in data communication In data communication, data are grouped into packets/frames. Each packet/frame contains a number of bits of information. Devices (phones, computers, etc.) don’t communicate simultaneously. It’s like they are sharing one single cable (the air in this case), only one person can use it at one time. Before an MS (mobile station) sends its packets, it checks to see if someone else is sending information. Only when the medium is free can an MS sends packets. If some station is sending or receiving signal, the MS that intends to send will generate a random waiting time and wait for its turn. If several MSs are all waiting for their turns, since their waiting times are randomly generated and thus not equal, they will not start sending simultaneously. Thus collision (two or more MSs sending signals simultaneously) is avoided. It’s called Carrier Sensing Multiple Access with Collision Avoidance (CSMA/CA). How does CSMA/CA (Carrier Sensing Multiple Access with Collision Avoidance) Work? (p. 189, Example 4.18):  How does CSMA/CA (Carrier Sensing Multiple Access with Collision Avoidance) Work? (p. 189, Example 4.18) RTS/CTS (Request-to-send/clear-to-send):  RTS/CTS (Request-to-send/clear-to-send) Request-to-send/clear-to-send (RTS/CTS) mechanism (p. 191-192, Fig. 4.17 & p. 462, Fig. 11.14) A terminal ready for transmission sends an RTS packet identifying the source address, destination address, and the length of the data to be sent. The destination station responds with CTS packet. The source terminal receives the CTS and sends the data. Other terminals go to the virtual carrier-sensing mode (NAV signal on), therefore the source terminal sends its packet with no contention. After completion of the transmission, the destination station sends an ACK, opening contention for other users. Spread spectrum in 802.11:  Spread spectrum in 802.11 It is a requirement imposed by the regulatory authorities for devices in ISM band in order to reduce interference. There is also limitations on transmitted power. We discuss two methods specified in 802.11, FHSS and DSSS. DSSS in 802.11:  DSSS in 802.11 Used by 802.11b Symbol transmission rate = 1Mbps Multipath spread of up to 1/1 Mbps = 1 µs does not cause ISI. For indoor applications this ensures that the system does not suffer from ISI. Chip rate = 11 Mcps Resolution is on the order of 1/11 Mcps = 90 ns. Use Barker code (Example 3.16, p. 116). Complementary code keying (CCK):  Complementary code keying (CCK) Used to increase the data rate to 11 Mbps Example 17, p. 119 Sec. 11.3.4, p. 457 Frequency Hopping in 802.11:  Frequency Hopping in 802.11 The frequency can hop over 78 hopping channels each separated by 1 MHz. The first channel, Channel 0, starts at 2.402 GHz. Channel 1 is at 2.403 GHz, Channel 2, 2.404 GHz, and so on up to Channel 77 at 2.479 GHz (US, Canada, and Europe standards). These frequencies are divided into three patterns of 26 hops each corresponding channel numbers (0, 3, 6, 9, …, 75), (1, 4, 7, 10, …, 76), (2, 5, 8, 11, …, 77), see p. 454, Fig. 11.5. Three APs can coexist without any hop collision, that results in a threefold increase in the capacity of the cell. Hop rate = 2.5 hops per second. Frequency bands for DSSS:  Frequency bands for DSSS FHSS uses 1 MHz bandwidth (narrowband), but the center frequency hops over 76 MHz. DSSS uses a chip rate of 11 Mcps which occupies around 26 MHz of bandwidth (wideband). The ISM band at 2.4 GHz is divided into 11 overlapping channels spaced by 5 MHz (see Fig. 11.6, P. 455). APs located close to each other can choose different channels to mitigate interference. Modulation:  Modulation Gaussian frequency shift keying (GFSK) is used (Sec. 3.6.1, p. 97). Wi-Fi network services:  Wi-Fi network services Distribution and integration Association, re-association, and disassociation Authentication and deauthentication Providing privacy Distribution:  Distribution This service is used by mobile stations in an infrastructure network every time they send data. Once a frame has been accepted by an access point, it uses the distribution service to deliver the frame to its destination. Any communication that uses an access point travels through the distribution service, including communications between two mobile stations associated with the same access point. Integration:  Integration Integration is a service provided by the distribution system; it allows the connection of the distribution system to a non-IEEE 802.11 network. The integration function is specific to the distribution system used and therefore is not specified by 802.11, except in terms of the services it must offer. Association:  Association Delivery of frames to mobile stations is made possible because mobile stations register, or associate, with access points. The distribution system can then use the registration information to determine which access point to use for any mobile station. Reassociation:  Reassociation When a mobile station moves between basic service areas within a single extended service area, it must evaluate signal strength and perhaps switch the access point with which it is associated. Reassociations are initiated by mobile stations when signal conditions indicate that a different association would be beneficial; they are never initiated by the access point. After the reassociation is complete, the distribution system updates its location records to reflect the reachability of the mobile station through a different access point. Disassociation:  Disassociation To terminate an existing association, stations may use the disassociation service. When stations invoke the disassociation service, any mobility data stored in the distribution system is removed. Once disassociation is complete, it is as if the station is no longer attached to the network. Disassociation is a polite task to do during the station shutdown process. The MAC is, however, designed to accommodate stations that leave the network without formally disassociating. Authetication/deauthentication:  Authetication/deauthentication Physical security is a major component of a wired LAN security solution. Wired network’s equipment can be locked inside offices. Wireless networks cannot offer the same level of physical security, however, and therefore must depend on additional authentication routines to ensure that users accessing the network are authorized to do so. Authentication is a necessary prerequisite to association because only authenticated users are authorized to use the network. (In practice, though, many access points are configured for "open-system" mode and will authenticate any station.) Deauthentication terminates an authenticated relationship. Because authentication is needed before network use is authorized, a side effect of deauthentication is termination of any current association.

Related presentations


Other presentations created by Reinardo

SCCM 2007 Overview
14. 02. 2008
0 views

SCCM 2007 Overview

Environmental Analysis
17. 01. 2008
0 views

Environmental Analysis

session1 ws4 dias powerpoint
07. 05. 2008
0 views

session1 ws4 dias powerpoint

K Rauscher WERT for ETSI EMTEL
02. 05. 2008
0 views

K Rauscher WERT for ETSI EMTEL

Panel1 1
23. 04. 2008
0 views

Panel1 1

Politics and the Olympic Games
22. 04. 2008
0 views

Politics and the Olympic Games

Animal Diversity and Function
17. 04. 2008
0 views

Animal Diversity and Function

ITI Olympics
15. 04. 2008
0 views

ITI Olympics

AYURVEDA
03. 03. 2008
0 views

AYURVEDA

4 15 04
09. 01. 2008
0 views

4 15 04

AFD 070521 051
09. 01. 2008
0 views

AFD 070521 051

01 Basangwa
11. 01. 2008
0 views

01 Basangwa

Tajikistan wildlife
15. 01. 2008
0 views

Tajikistan wildlife

Dec 4 comets and meteors
16. 01. 2008
0 views

Dec 4 comets and meteors

succeed in industry
22. 01. 2008
0 views

succeed in industry

APEC Korea
23. 01. 2008
0 views

APEC Korea

TAXEFF
24. 01. 2008
0 views

TAXEFF

Ichia
24. 01. 2008
0 views

Ichia

7 GB Microcredit
04. 02. 2008
0 views

7 GB Microcredit

Slides 6 22 3
12. 02. 2008
0 views

Slides 6 22 3

HKPC Sep06
24. 01. 2008
0 views

HKPC Sep06

media presentation
28. 01. 2008
0 views

media presentation

biotic
28. 01. 2008
0 views

biotic

Me445 robotics
28. 01. 2008
0 views

Me445 robotics

SIENA
16. 01. 2008
0 views

SIENA

sexualityinchina
31. 01. 2008
0 views

sexualityinchina

foucault3
05. 02. 2008
0 views

foucault3

ESM 219 N Cycle 07
07. 02. 2008
0 views

ESM 219 N Cycle 07

Angel vc hedge PE
07. 02. 2008
0 views

Angel vc hedge PE

Ch2
14. 01. 2008
0 views

Ch2

tender mercy
26. 02. 2008
0 views

tender mercy

vic miller
05. 03. 2008
0 views

vic miller

TecEcoEco CementConcretes011105
12. 02. 2008
0 views

TecEcoEco CementConcretes011105

WERTH SITE
22. 01. 2008
0 views

WERTH SITE

Aarhus Lecture
07. 03. 2008
0 views

Aarhus Lecture

Mahesh05
30. 01. 2008
0 views

Mahesh05

ES110 S07 OzoneTalk
20. 02. 2008
0 views

ES110 S07 OzoneTalk

hvrp grant app info
24. 03. 2008
0 views

hvrp grant app info

Finding our way
08. 01. 2008
0 views

Finding our way

2002 10 xx alguns dias depois
23. 01. 2008
0 views

2002 10 xx alguns dias depois

cs4811 lastclass
21. 03. 2008
0 views

cs4811 lastclass

presentation Willison B G
03. 04. 2008
0 views

presentation Willison B G

Outside reading I Semester 2
11. 02. 2008
0 views

Outside reading I Semester 2

CF eng
25. 01. 2008
0 views

CF eng

BrookeHanson specialfx
09. 01. 2008
0 views

BrookeHanson specialfx

Folien def juni06
07. 02. 2008
0 views

Folien def juni06

orangutans
13. 01. 2008
0 views

orangutans