babar

Information about babar

Published on October 15, 2007

Author: Haggrid

Source: authorstream.com

Content

What’s the Matter with AntiMatter?:  What’s the Matter with AntiMatter? Paul Dirac Predicts AntiMatter!:  Paul Dirac Predicts AntiMatter! In 1929, Theoretical Physicist Paul Dirac combined Special Relativity Quantum Mechanics to try to describe the behavior of the electron One problem with his equation: it had two solutions This is not always bad. For example, the equation x2=25 also has two solutions: +5 and -5 In Dirac’s case, his equation had two solutions: An electron with positive energy An electron with negative energy Usually, negative energy solutions are NOT GOOD! Energy must always be positive. But Dirac was pretty smart. He realized that in his case, the negative energy electrons could be INTERPRETED as anti-electrons Neils Bohr: Of all physicists, Dirac has the purest soul. The Dirac Equation in Comic Book Form:  The Dirac Equation in Comic Book Form The Discovery of Cosmic Rays:  The Discovery of Cosmic Rays At the beginning of the 20th century, scientists thought there was too much radioactivity than could be accounted for naturally. Where was it coming from? Victor Hess decided to test the idea that the additional radiation came from outer space. In 1912, one way to do this was by BALLOON! He got to about 18,000 feet (without oxygen) He noticed that the radiation steadily increased. COSMIC RAYS! Beaten to the Punch!:  Beaten to the Punch! Actually, a Jesuit Priest named Theodor Wulf beat Hess by 2 years, noting that the radioactivity at the top of the Eiffel Tower was higher than at the base. But alas, no Nobel Prize. This went to Hess in 1936. The Discovery of Antimatter!:  The Discovery of Antimatter! In 1932 Carl Anderson studied cosmic rays using a “cloud chamber”. Charged particles produced in cosmic rays would enter the chamber and leave “tracks”. The tracks would bend in circles because the chamber was placed in a strong magnetic field Positive particles bend one way Negative particles bend the other way He found equal numbers of positive and negative particles Maybe the negative particles were electrons? (YES!) Maybe the positive particles were protons? (NO!) By studying how much energy the positive particles lost, he figured out that they had the same mass as the electrons! Positive electrons! Antimatter! Nobel Prize! More Antimatter: Search for AntiProton:  More Antimatter: Search for AntiProton The search for antiprotons heated up in the 1940s and 1950s, as laboratory experiments reached ever higher energies... In 1930, Ernest Lawrence (Nobel Prizewinner in 1939) had invented the cyclotron, a machine that eventually could accelerate a particle like a proton up to an energy of a few tens of MeV. Initially driven by the effort to discover the antiproton, the accelerator era had begun, and with it the new science of "High Energy Physics" was born. It was Lawrence that, in 1954, built the Bevatron at Berkeley, California (BeV, at the time, was what we now call GeV). The Bevatron could collide two protons together at an energy of 6.2 GeV, expected to be the optimum for producing antiprotons. Meanwhile a team of physicists, headed by Emilio Segre', designed and built a special detector to see the antiprotons. In October 1955 the big news hit the front page of the New York Times: "New Atom Particle Found; Termed a Negative Proton". With the discovery of the antiproton, Segre' and his group of collaborators (O. Chamberlain, C. Wiegand and T. Ypsilantis) had succeeded in a further proof of the essential symmetry of nature, between matter and antimatter. Segre' and Chamberlain were awarded the Nobel Prize in 1959. Only a year later, a second team working at the Bevatron (B. Cork, O. Piccione, W. Wenzel and G. Lambertson) announced the discovery of the antineutron. But Can We Make and Anti-Nuclei? YES!:  But Can We Make and Anti-Nuclei? YES! By now, all three particles that make up atoms (electrons, protons and neutrons) were know to each have an antiparticle. So if particles, bound together in atoms, are the basic units of matter, it is natural to think that antiparticles, bound together in antiatoms, are the basic units of antimatter. But are matter and antimatter exactly equal and opposite, or symmetric, as Dirac had implied? The next important step was to test this symmetry . Physicists wanted to know: how do subatomic antiparticles behave when they come together? Would an antiproton and an antineutron stick together to form an antinucleus, just as protons and neutrons stick together to form an atom's nucleus? The answer to the antinuclei question was found in 1965 with the observation of the antideuteron, a nucleus of antimatter made out of an antiproton plus an antineutron (while a deuteron, the nucleus of the deuterium atom, is made of a proton plus a neutron). The goal was simultaneously achieved by two teams of physicists, one led by Antonino Zichichi, using the Proton Synchrotron at CERN, and the other led by Leon Lederman, using the Alternating Gradient Synchrotron (AGS) accelerator at the Brookhaven National Laboratory, New York. What about anti-atoms?:  What about anti-atoms? At this point, a natural question to ask: Can we form antiatoms? The necessary ingredients: an antiproton and an antielectron. But typically when these things are made, an accelerator is used, and the anti-particles are moving too fast. So we need to slow them down. This was done at the European Laboratory CERN, using the Low Energy Antiproton Ring (LEAR). In 1995, scientists at LEAR succeed in making the first anti-atoms (about 9 of them). So anti-atoms exist, and a natural question to ask is: Are there anti-worlds out there? Anti-galaxies? Before answering this question, lets first try to ask what practical use anti-particles have in our world. Can anyone think of any? Low Energy Antiproton Ring (LEAR). PET:  PET "PET“ stands for Positron Emission Tomography. Positron Emission Tomography uses positrons to look at the brain. Radioactive nuclei in a fluid are injected into the subject. The radioactive nuclei then emit positrons at low velocities and these then annihilate with nearby electrons. The positrons and electrons are moving slowly and don't have the energy required to create a new pair of particle and antiparticle. Instead, 2 gamma rays are emitted and these are used to actively scan the brain. The gamma rays leave the patient’s body and are detected by the PET scanner. The information is then fed into a computer to be converted into a complex picture of the patient’s working brain. Anti-Matter SpaceCraft!?:  Anti-Matter SpaceCraft!? NASA's Marshall Space Flight Center, Pennsylvania State University are studying using annihilation of matter and antimatter to fuel spacecraft. Matter and antimatter provides the highest energy density of any known propellant. it would require only a gram of antimatter to put the shuttle into orbit. about ten billion times more energy than the hydrogen/oxygen mixture that powers the shuttle 300 times more than the fusion reactions at the Sun's core. But… costs $62.5 trillion per gram. Might be able to bring this down to $5 billion per gram Slide12:  How do we really know that the universe is not matter-antimatter symmetric? We have landed on the moon,so we know the moon is made of matter. Cosmic rays from the sun are matter not antimatter. The other planets are matter (Mars Rovers are still taking data!) The Milky Way: Cosmic rays sample material from the entire galaxy. In cosmic rays, protons outnumber antiprotons 104 to 1. The Universe at large: This is tougher.  If there were antimatter galaxies then we should see gamma emissions from annihilation.  Colliding Galaxies:  Colliding Galaxies The image shows the collision of two galaxies from the Hubble Space Telescope 63 million light years away. Such collisions would occur in other places in the universe as well. If there were anti-matter galaxies, then such collisions would result in a very specific signature of gamma rays (like what we see in the PET scanner). No such signal is seen. Also, by looking at cosmic rays, there is some antimatter, but this can be accounted for by radioactive decays or by nuclear reactions involving ordinary matter. So we believe most of the universe (>99.99%) is made of matter. The Antennae Galaxies Any Other Evidence for Antimatter in the Universe?:  Any Other Evidence for Antimatter in the Universe? NASA's orbiting Compton Gamma Ray Observatory (CGRO) spacecraft spotted unexpected clouds of antimatter in the Milky Way Galaxy. The clouds suggest a hot fountain of gas filled with antimatter electrons is rising from the region around the center of the our galaxy. Antimatter electrons also are known as positrons. The nature of the furious activity producing the hot antimatter-filled fountain is unclear, but could be related to massive numbers of stars being born near the large black hole at the center of our galaxy. Other possibilities include winds from giant stars or black hole antimatter factories. Ok. The Universe is Only Matter. So What?:  Ok. The Universe is Only Matter. So What? The fact that there is only matter present is a problem All models of how the universe started in the Big Bang indicate that there should be as much matter as antimatter, initially. Every reaction we know of which makes a quark, also gives us an anti-quark This problem is referred to as the “Baryon Asymmetry” problem, where “Baryon” is a general name for things like protons and neutrons. Biology Asymmetry: aminoacids only righthanded chains So there must be some mechanism which prefers matter to antimatter Since there is so much matter (in terms of baryons) you might think that the mechanism must be very obvious – that is that it is a very large effect But there are about 10 billion photons for every baryon in the universe Where did these photons come from? Baryon+anitbaryon -> two photons So an asymmetry which leaves 1 baryon leftover for every 10 billion baryons would work fine Sakharov Conditions:  Sakharov Conditions In 1967 Andrei Sakharov (father of the Soviet Bomb and later dissident) proposed three conditions that – if satisfied – would account for the propenderence of matter over antimatter 1: Baryon number violation: There must be a way of making(or destroying) baryons that differs from making (or destroying) antibaryons Possible in the early universe 2: Must be a process which favors matter over anti-matter CP violation. CP is something called a transformation To understand CP, we need to understand first the processes called C and P The first two conditions can generate both baryons and an asymmetry of baryons over antibaryons. But we need another condition to “freeze” this situation in place to have what we observe today. 3: The universe must fall out of thermal equilibrium, at the precise moment when baryon number switches from being efficiently violated, to being almost exactly conserved. Charge Conjugation C and Time Reversal T:  Charge Conjugation C and Time Reversal T Charge Conjugation, C Charge conjugation turns a particle into its anti-particle e+  e- K-  K+ g  g Time Reversal, T Changes, for example, the direction of motion of particles t  -t Parity Transformation:  Parity Transformation Parity, P Vectors change sign The parity transformation changes a right-handed coordinate system into a left-handed one or vice versa. Two applications of the parity transformation restores the coordinate system to its original state. C and P Symmetry Can be Violated:  C and P Symmetry Can be Violated You can apply the Charge conjugation transformation to a particle Apply it to the electron: get a position: this exists Apply it to a neutrino: complication: there are only left-handed neutrinos or right handed anti-neutrinos So C applied to a left-handed neutrino gives you a left-handed anti-neutrino. But this particle does not exist You can apply the Parity transformation to a particle. Applying P to a “left-handed neutrino” generates a “right-handed neutrino” But this particle does not exist! As a result, it is said that the weak force (the only force that a neutrino feels) is not symmetric under the parity transformation Turns out that the transformation CP does work for neutrinoes CP(left handed neutrino) = right handed antineutrino CP Symmetry:  CP Symmetry The CP symmetry appears to work in the weak force The CP symmetry does work in both strong and electromagnetic forces But to help explain matter antimatter asymmetry, we need CP violation It turns out that CP symmetry is actually violated in some weak force cases… at a very low rate CP can be violated:  CP can be violated There is a particle called the KL (read K-long) It has a well defined mass (and lifetime) No other particle has such a mass Therefore, the KL is it OWN anti-particle! The KL decays in the following way It decays both to and to , but slightly more often to the latter mode. Therefore, it violates both C and CP. So CP can be violated. But the violation is really rare: like waving to yourself in a mirror one thousand times, and once your reflection waves back with the other hand! Interesting aside: Say there was an alien, and you wanted to meet them Are they made of matter or antimatter? How could you tell? Hint: Ask them to look at how the KL decays…. BaBar:  BaBar Why BaBar? Bottom AntiBottom Assymetric Ring The detector is designed to study Bottom-mesons A meson is a combination of a quark and an antiquark Bottom mesons contain one bottom quark Why study bottom quarks? CP violation is expected just like for KL decays But it could (should) be much larger Is the amount needed to explain matter-antimater assymetry in the universe? Stanford Linear Accelerator Center (SLAC):  Stanford Linear Accelerator Center (SLAC) The 3-km long linear accelerator in Stanford, California uses electromagnetic fields to accelerate electrons and positrons to close to the speed of light: PEP-II Rings:  PEP-II Rings The electrons and positrons are then guided into the two PEP-II storage rings (PEP stands for Positron Electron Project). The rings are located one on top of the other. Electrons go clockwise round the lower ring (which is an upgrade of the older PEP storage ring, which came into operation in 1980). Positrons go anticlockwise round the newly built upper ring. A BaBar “Event”:  A BaBar “Event” The B mesons live for about a billionth of a second, in which time they travel less than a millimetre. The BaBar detector observes the particles to which the Bs decay. From the decay products, the physicists can deduce which was the B and which was the anti-B. They can also measure how far and fast the Bs travel before decaying, and hence they can calculate their lifetimes. The Unitarity Triangle:  The Unitarity Triangle Amazingly enough, studying CP violation in Bottom mesons can be reduced to measuring the sides and angles of a special triangle The Unitarity triangle BaBar is mostly interested in measuring the angle called  Actually measures sin(2) Result is 0.74 +/- 0.07 The physicists are interested in the difference in the decay times of the and the . By observing millions of decays, they can build up a distribution of the differences in the decay times. It is predicted that the actual distribution will be different from that which you would get if there were complete symmetry between matter and antimatter. A possible problem with all of this!:  A possible problem with all of this! The first is that the CP violation of the Standard Model is far, far too weak to explain the matter-antimatter asymmetry. There must be extra physics which introduces new CP violation. There are some strong limits on such new CP violation, which generally require it to occur via interactions which will be very hard to measure in future particle physics experiments. In any case, the CP violation must involve new physics we don't know about. Slide28:  Evidence that the laws of nature are not completely symmetric with respect to matter and antimatter first emerged in 1964, when a violation of the so-called charge-parity (CP) symmetry was observed in ephemeral particles known as K mesons, or kaons. Researchers discovered a tiny discrepancy between kaons and anti-kaons in the way they decay.

Related presentations


Other presentations created by Haggrid

makyaj
18. 06. 2007
0 views

makyaj

2407224601
22. 04. 2008
0 views

2407224601

0616PVR76491
17. 04. 2008
0 views

0616PVR76491

DART Slideshow
17. 04. 2008
0 views

DART Slideshow

AdvFin 2008 01 Introduction
10. 04. 2008
0 views

AdvFin 2008 01 Introduction

dept revenue presentation
09. 04. 2008
0 views

dept revenue presentation

het607 m06a01
07. 04. 2008
0 views

het607 m06a01

20061116 intl ops
30. 03. 2008
0 views

20061116 intl ops

2004 AMCHAM Doorknock
27. 03. 2008
0 views

2004 AMCHAM Doorknock

pdhpe moderate
18. 06. 2007
0 views

pdhpe moderate

Where the Red Fern Grows
03. 10. 2007
0 views

Where the Red Fern Grows

tutorial 1
19. 09. 2007
0 views

tutorial 1

Future Law Enforcement ppt
19. 09. 2007
0 views

Future Law Enforcement ppt

231B 2006 Suetterlin Lec1
12. 10. 2007
0 views

231B 2006 Suetterlin Lec1

Crocodile
12. 10. 2007
0 views

Crocodile

VLSI Symp 2 10 2007
09. 10. 2007
0 views

VLSI Symp 2 10 2007

2003 08 27 Schelle Wolff Carola
24. 10. 2007
0 views

2003 08 27 Schelle Wolff Carola

875 PERL 06 mini
02. 11. 2007
0 views

875 PERL 06 mini

Where the Sidewalk Ends
26. 10. 2007
0 views

Where the Sidewalk Ends

CNV
22. 10. 2007
0 views

CNV

pfit
07. 11. 2007
0 views

pfit

scholz
16. 11. 2007
0 views

scholz

DDR Frog Licking
17. 11. 2007
0 views

DDR Frog Licking

The Suffering of Jesus
17. 08. 2007
0 views

The Suffering of Jesus

lecture5
28. 11. 2007
0 views

lecture5

ontology
11. 12. 2007
0 views

ontology

predationmurray
01. 01. 2008
0 views

predationmurray

academy mission vision
03. 01. 2008
0 views

academy mission vision

Maldives presentation
07. 08. 2007
0 views

Maldives presentation

mood disorders
07. 08. 2007
0 views

mood disorders

Loh Verma Michalowski CPS04
07. 08. 2007
0 views

Loh Verma Michalowski CPS04

Karen Middleton
07. 08. 2007
0 views

Karen Middleton

Linkage ordinal data hm
07. 08. 2007
0 views

Linkage ordinal data hm

modern Day Slavery
07. 08. 2007
0 views

modern Day Slavery

MOA Presentation Mandsager final
07. 08. 2007
0 views

MOA Presentation Mandsager final

oct15 insurance reinsurance RGA
07. 08. 2007
0 views

oct15 insurance reinsurance RGA

maldives khaleel
07. 08. 2007
0 views

maldives khaleel

peters HTC BlueGene CondorWeek
19. 09. 2007
0 views

peters HTC BlueGene CondorWeek

mostly oopsla03
19. 09. 2007
0 views

mostly oopsla03

2005 Loftus Introduced Fish
19. 11. 2007
0 views

2005 Loftus Introduced Fish

UNTITLED
07. 08. 2007
0 views

UNTITLED

knoblock
23. 10. 2007
0 views

knoblock

India US Dual Use Goldman
17. 08. 2007
0 views

India US Dual Use Goldman

RedSquare Bike Ride Eng
27. 09. 2007
0 views

RedSquare Bike Ride Eng

Financing EFA Maldives
07. 08. 2007
0 views

Financing EFA Maldives

Languages Models Factories
14. 11. 2007
0 views

Languages Models Factories

Ge11cDIfferentiation
20. 02. 2008
0 views

Ge11cDIfferentiation

1950s
24. 02. 2008
0 views

1950s

Dual Language Posterboard 2
24. 02. 2008
0 views

Dual Language Posterboard 2

200792013611855
10. 10. 2007
0 views

200792013611855

as2007 aviation careers brief
28. 02. 2008
0 views

as2007 aviation careers brief

BiodieselFuelQuality pt1
29. 02. 2008
0 views

BiodieselFuelQuality pt1

2005 Inflammation
04. 03. 2008
0 views

2005 Inflammation

MI 2006 final 11 9
07. 08. 2007
0 views

MI 2006 final 11 9

figuerola lucifer
15. 10. 2007
0 views

figuerola lucifer

TOXICVB
05. 01. 2008
0 views

TOXICVB

GENIe ISA
10. 03. 2008
0 views

GENIe ISA

Pretty Blue Planet
19. 09. 2007
0 views

Pretty Blue Planet

AM1 DTV China EN
11. 10. 2007
0 views

AM1 DTV China EN

2007RoyalEurope consumer
01. 11. 2007
0 views

2007RoyalEurope consumer

YTBv4
12. 03. 2008
0 views

YTBv4

SevenBrochure
26. 03. 2008
0 views

SevenBrochure

memphis
23. 10. 2007
0 views

memphis

NASBE Asthma Policies
07. 08. 2007
0 views

NASBE Asthma Policies

Apache Harmony Short Talk
19. 09. 2007
0 views

Apache Harmony Short Talk

DSF
07. 01. 2008
0 views

DSF

Module 10 C Older Adults
07. 08. 2007
0 views

Module 10 C Older Adults

CEC 999 2006 018
11. 10. 2007
0 views

CEC 999 2006 018

NNER MAGAZIN neu
18. 06. 2007
0 views

NNER MAGAZIN neu

kids slide show
18. 06. 2007
0 views

kids slide show

Inco Present1
18. 06. 2007
0 views

Inco Present1

nifty fifty thrifty 2
18. 06. 2007
0 views

nifty fifty thrifty 2

Navigator
18. 06. 2007
0 views

Navigator

mudancas internas2 lila
18. 06. 2007
0 views

mudancas internas2 lila

MMC Selection271006
18. 06. 2007
0 views

MMC Selection271006

MD Rhythm Software
18. 06. 2007
0 views

MD Rhythm Software

Experian
19. 09. 2007
0 views

Experian

urb1
27. 11. 2007
0 views

urb1

presentation reunion cnds clubs
18. 06. 2007
0 views

presentation reunion cnds clubs

PMA Veri Sign Hot Trends
18. 06. 2007
0 views

PMA Veri Sign Hot Trends

Phys Act2 Ron Johnston
18. 06. 2007
0 views

Phys Act2 Ron Johnston

cdp 8 12 06
19. 09. 2007
0 views

cdp 8 12 06

cdp 12 06
19. 09. 2007
0 views

cdp 12 06

061101 Panofsky
17. 08. 2007
0 views

061101 Panofsky

Saints or Sinners
17. 08. 2007
0 views

Saints or Sinners

memoria
18. 06. 2007
0 views

memoria

00021386
19. 09. 2007
0 views

00021386

peso fall protection w
04. 01. 2008
0 views

peso fall protection w

irony
15. 06. 2007
0 views

irony

HOUSE HOLDER
15. 06. 2007
0 views

HOUSE HOLDER

god you are looking for
15. 06. 2007
0 views

god you are looking for

generadio7
15. 06. 2007
0 views

generadio7

friendship cinquain
15. 06. 2007
0 views

friendship cinquain

foreign words in english
15. 06. 2007
0 views

foreign words in english

FME UC 2006 Opening Session
15. 06. 2007
0 views

FME UC 2006 Opening Session

First fun in the afternoon
15. 06. 2007
0 views

First fun in the afternoon

feml fool 2006
15. 06. 2007
0 views

feml fool 2006

FATE AND CHANCE WEEK I 2006
15. 06. 2007
0 views

FATE AND CHANCE WEEK I 2006

FATE AND CHANCE WEEK 2 2006
15. 06. 2007
0 views

FATE AND CHANCE WEEK 2 2006

faq remarriage
15. 06. 2007
0 views

faq remarriage

faq commitment
15. 06. 2007
0 views

faq commitment

Fabulously Funny Facts
15. 06. 2007
0 views

Fabulously Funny Facts

NEW MEMBERS
18. 06. 2007
0 views

NEW MEMBERS

FOL and Prolog
15. 06. 2007
0 views

FOL and Prolog

mouton
18. 06. 2007
0 views

mouton

NPR
18. 06. 2007
0 views

NPR

NOWARonIran
16. 10. 2007
0 views

NOWARonIran

maendsregler
18. 06. 2007
0 views

maendsregler

Les arts figuratives al s XIX
01. 10. 2007
0 views

Les arts figuratives al s XIX

Kirkpatrick
07. 08. 2007
0 views

Kirkpatrick

texas emission
26. 02. 2008
0 views

texas emission

NFI Pact presentation copy 2
07. 08. 2007
0 views

NFI Pact presentation copy 2

casestudy
22. 10. 2007
0 views

casestudy

Thankyou Lord
17. 08. 2007
0 views

Thankyou Lord

megagreen
18. 06. 2007
0 views

megagreen

SRaha
17. 08. 2007
0 views

SRaha

Glasgow Anand
15. 11. 2007
0 views

Glasgow Anand

2 day training slideshow
07. 08. 2007
0 views

2 day training slideshow

Finch
15. 11. 2007
0 views

Finch