Ch 7 MM

Information about Ch 7 MM

Published on December 1, 2007

Author: Laurie

Source: authorstream.com

Content

Chapter 7 : Multimedia OS:  Chapter 7 : Multimedia OS Introduction to multimedia Multimedia files Video compression Multimedia process scheduling Multimedia file system paradigms File placement Caching Disk scheduling for multimedia Introduction to Multimedia -Terms:  Introduction to Multimedia -Terms Multimedia : more than one medium Video : pictures Audio : sound DVD (Digital Versatile Disk) – 5 to 17 GB Cable TV ADSL (Asymmetric Digital Subscriber Loop) Video on Demand (select a movie of your choice) What is ADSL?:  Asymmetric Digital Subscriber Loop 2-8 Mbps downstream 640 - 960 kbps upstream Enables high speed data on a single pair of local copper loop Runs voice and data concurrently over same pair of wire What is ADSL? Video On Demand : Satellite Transmission:  Video On Demand : Satellite Transmission Video On Demand: ADSL - Cable:  Video On Demand: ADSL - Cable ADSL Cable Video On Demand Infrastructures:  Video On Demand Infrastructures Video Server : a powerful computer that stores many movies in its file system and plays them on demand A distribution network: satellite, ADSL or cable Set-top box in each house for decoding and decompressing the signal (PC in a box containing a CPU, RAM, ROM and an interface to the distribution network) Some data rates: multimedia, high performance I/O devices:  Some data rates: multimedia, high performance I/O devices Note: 1 Mbps = 106 bits/sec but 1 GB = 230 bytes Multimedia:  Multimedia Uses extremely high data rates Data has to be compressed for transmission and decompressed at the receiving end Requires real-time playback NTSC (National Television Standards Committee - North and South America and Japan) runs at 30 frames/sec PAL (Phase Alternating Line – Germany, Turkey etc., - technically the best) runs at 25 frames/sec SECAM (SEquential Colour Avec Memoire – France and Eastern Europe) runs also at 25 frames/sec Multimedia Files:  Multimedia Files A movie may consist of several files which should be synchronized during playback Audio Encoding (1):  Audio Encoding (1) Humans can hear frequencies from 20 Hz to 20,000 Hz Sound amplitude is measured in decibels (dB) Ordinary conversion is about 50 dB and pain threshold is about 120 dB Audio Encoding (2):  Audio Encoding (2) A sine wave Sampled sine wave (amplititues are taken at Δt intervals) Sample quantized to four bits Audio Encoding (3):  Audio Encoding (3) Conversion from analog audio to digital is done by an analog to digital converter (ADC) According to the sampling theory: sampling should be done at a frequency of 2f where f is the highest frequency in the audio signal to decode the signal at the receiving end Error induced by finite sampling is called quantization noise (due to the number of bits chosen to represent an amplitute) Examples of sampled sound telephone – pulse code modulation (8,000 samples/sec - 7-8 bits/sample) audio compact disks (44,100 samples/sec – 16 bits/sample) Video Encoding (1) - Analog:  Video Encoding (1) - Analog The camera scans an electron beam rapidly across the image and slowly down it, recording the light intensity as it goes The intensity as a function of time is broadcast, and receivers repeat the scanning process to reconstruct the image Video Encoding (2) - Analog:  Video Encoding (2) - Analog Scanning Pattern for NTSC Video and Television Video Encoding (3) - Analog:  Video Encoding (3) - Analog NSTC 525 scan lines (only 483 displayed) Horizontal to vertical aspect ratio of 4:3 30 frames/sec PAL & SECAM 625 scan lines (only 576 displayed) Horizontal to vertical aspect ratio of 4:3 25 frames/sec Video Encoding (4) - Analog:  Video Encoding (4) - Analog Color video uses the same scanning pattern Three beams are used: one for each primary color red, green and blue (RGB). Any color is a combination of red, green and blue To transmit on a single channel, the three color signals are combined into a single composite signal This composite signal has three components: luminance (brightness), 2 chrominance (color: hue/tint, saturation/color) signals. This arrangement is for allowing color transmissions to be viewed on black-and-white receivers Video Encoding (5) - Digital:  Video Encoding (5) - Digital Each frame is represented by a rectangular grid of pixels Color video uses 8 bits/pixel for each of the RGB colors To produce smooth motion digital video also displays 25 frames/sec Video Compression (1):  Video Compression (1) Manipulating multimedia material in uncompressed form is out of question Compression and decompression are known as encoding and decoding Video Compression (2):  Video Compression (2) Asymmetries Encoding once (before transmission. This may be slow), decoding many (when viewed by customers in real time. This must be fast) When the decoded output is not exactly equal, the system is said to be lossy. All compression systems used for multimedia are lossy because they give much better compression Video Compression (3):  Video Compression (3) Compression Standards JPEG (Joint Photographic Experts Group) for still pictures (e.g., photographs) often produces 20:1 compression MPEG (Motion Picture Experts Group) for videos MPEG-1 – video recorder-quality output (352x240 for NTSC) using a bit rate of 1.2 Mbps MPEG-2 – broadcast quality video of 4-6 Mbps for a NTSC or PAL broadcast MPEG is in a way JPEG encoding on each frame separately Operating Systems with Multimedia Support:  Operating Systems with Multimedia Support Multimedia needs real-time processing Operating systems with multimedia support differ from the traditional operating systems in three main ways: Process scheduling File system Disk scheduling Scheduling Homogeneous Processes (1):  Scheduling Homogeneous Processes (1) Consider a simple video server to support the display of a fixed number of movies, all using the same frame rate, video resolution, data rate, and other parameters For each movie a single process (or thread) reads the movie from the disk one frame at a time and then transmit that frame to the user Scheduling Homogeneous Processes (2):  Scheduling Homogeneous Processes (2) Since all processes are equally important, do the same activity for each movie, round-robin scheduling is fine What is needed is a timing mechanism to make sure each process runs at the correct frequency (30 frames/sec for NTSC and 25 frames/sec for PAL and SECAM) A master clock ticks at the required frequency (say 25 times per second in the case of PAL). At each tick, all processes run one after the other and in the same order. Process finishing work (frame transmitted) suspends itself and waits for the next tick As long as the number of processes is small enough that all the work can be done in one frame time, round-robin is sufficient General Real-Time Scheduling (1):  General Real-Time Scheduling (1) Number of users changes as viewers come and go, frame sizes vary due to compression, and different movies may have different resolutions This means several processes have to run at different frequencies, with different amount of work, and with different deadlines General Real-Time Scheduling (2):  General Real-Time Scheduling (2) General Real-Time Scheduling (3):  General Real-Time Scheduling (3) If process i has a period Pi msec and requires Ci msec of CPU time per frame, the system is schedulable if and only if where m is the number of processes (0.808 for the previous example) Real-time algorithms can be either static or dynamic RMS (Rate Monotonic Scheduling) EDF (Earliest Deadline First Scheduling) RMS (Rate Monotonic Scheduling):  RMS (Rate Monotonic Scheduling) This is a static real-time scheduling algorithm Each process has a fixed priority based on its frames/sec value (hence, rate monotonic) Rule: Each periodic process must complete within its period Select always the highest priority process If a high priority process becomes ready for execution at any time, it preempts the running process if there is An Example of RMS Scheduling:  An Example of RMS Scheduling EDF (Earliest Deadline First Scheduling):  EDF (Earliest Deadline First Scheduling) EDF is dynamic algorithm that does not require processes to be periodic (RMS does) processes to have the same run time per CPU burst (RMS does) The scheduler keeps a list of runnable processes, sorted on deadline. The algorithm runs the first process on the list, the one with the closest deadline Whenever a new process becomes ready, the system checks to see if its deadline occurs before that of the currently running process. If so, the running process is preempted An Example of EDF Scheduling:  An Example of EDF Scheduling Deadline times: A : 0 - 30 - 60 - 90 - 120 - 150 B : 0 - 40 - 80 - 120 – 160 C : 0 – 50 – 100 - 150 Another example of RMS and EDF:  Another example of RMS and EDF Process A needs 15 msecs instead of 10 msec. RMS fails but EDF works fine. If the CPU utilization is below an RMS limit (see p.474 of the book) RMS can be used else EDF should be chosen Multimedia File Systems (1):  Multimedia File Systems (1) Traditional file systems perform an open, several reads and close at the end During read operations, processes wait until I/O is finished but timing is not all that important. The data eventually comes. That is, the user pulls the data in one block at a time by repeately calling read calls to get one block after the other File servers of this type are often called pull servers (user pulls the data) Multimedia File Systems (2):  Multimedia File Systems (2) For multimedia, read calls must be at fairly specified times and the video server must be able to supply data blocks without a delay Multimedia file servers, after a start call, begin sending out frames at the required rate. It is up to the user to handle them at the rate they come in File servers of this nature are called push servers because they push data at the user Multimedia File System Paradigms (3):  Multimedia File System Paradigms (3) Pull and Push Servers VCR Control Functions:  VCR Control Functions Pause is simple send a message to the video server to stop Rewind is simple set next frame to zero Fast forward/backward are trickier compression makes rapid motion complicated special compressed file containg e.g. every 10th frame (see slide 7-9) Near Video on Demand (1):  Near Video on Demand (1) Having k users getting the same movie puts essentially the same load on the server as having them getting k different movies Since viewers want to view at arbitrary times one movie stream can not be shared Tell users that movies start on the hour and every (for example) 5 minutes thereafter. Thus if a user wants to see a movie at 8:02, he will have to wait until 8:05 A 2-hour movie starting at every 5 minutes need 24 (120/5) streams regardless the number of customers. Viewers starting at the same starting time share the stream Near Video on Demand (2):  Near Video on Demand (2) New stream starting at regular intervals (in every 5 minutes for a 2-hour movie) File Placement :  File Placement Multimedia files Are very large Written once but read many times Accessed sequentialy Contiguous Movie Storage:  Contiguous Movie Storage Video, audio, text in single contiguous file per movie instead of separate files for each component Read one frame in one disk operation and transmit only relevant parts to the user This organization is not efficient when random access is needed (say for a movie editing system) or in video servers with multiple concurrent output streams (accessing the desired frame from a movie is not easy in a contiguous file) Noncontiguous Movie Storage:  Noncontiguous Movie Storage Small disk blocks - a frame index for the whole movie each index points to one frame data (variable frame size) Large disk blocks multiple frames in one block (constant block size) a block index for the whole movie Trade-offs between small, large blocks:  Trade-offs between small, large blocks Frame index heavier RAM usage during movie play (due to variable frame sizes ) little disk wastage Block index (no splitting frames over blocks) low RAM usage major disk wastage Block index (splitting frames over blocks allowed) low RAM usage no disk wastage extra seeks Placing Files for Near Video on Demand:  Placing Files for Near Video on Demand 30 frames/sec with a new stream starting every 5minutes Stream 24 is just starting (stream repeating on the hour every 2 hours) Frames needed for all 24 streams at that time are in track 1 as a single record which can be read in one read operation Double buffering is used (playback from one buffer while reading the next 24 frames from the next track) Placing Multiple files on a Single Disk :  Placing Multiple files on a Single Disk Organ-pipe distribution of files on server most popular movie in middle of disk next most popular either on either side, etc. This strategy is based on statistical analysis of popularity (see Zipf’s law) For a 1000 movie server, top 5 movies represent a total probability of .307, which means that the disk arm will stay in the cylinders allocated to the top five movies about 30% of the time Placing Files on Multiple Disks:  Placing Files on Multiple Disks Organize multimedia files on multiple disks to balance the load on disks (a) No striping – one disk holds all frames of a movie - popular films may cause a strain on the relevant hard disk (b) Same striping pattern for all files – all movies start from the same disk (c) Staggered striping (d) Random striping This organization is not a RAID (no error correction is required – but high performance definitely) Caching:  Caching Block Caching Two users, same movie 10 sec out of sync – keep the blocks in cache, but this wastes memory Merging two streams into one by running the first movie a bit slower and the other a bit faster for a while File Caching:  File Caching Most movies are stored on DVD or tape to save disk space copy to disk when needed results in large startup time keep most popular movies on disk Can keep first few minutes of all movies on disk start movie from this while remainder is fetched Disk Scheduling for Multimedia:  Disk Scheduling for Multimedia Traditional OS requests for disk blocks is unpredictable rerform one-block read ahead for each file to increase performance other than that, wait for requests to come in and process them on demand Multimedia OS each active stream puts a well defined load on the system that is highly predictable (for PAL, a frame is needed every 40 msec) Static Disk Scheduling for Multimedia:  Static Disk Scheduling for Multimedia Time is divided into rounds, where a round time is the frame time (40 msec for PAL) In one round, each movie asks for one frame (no requests till the the next round) Sort the requests in the optimal way – probably in cylinder order Use double buffering in the server Works well if all streams have the same properties (frame rate, resolution etc.) Dynamic Disk Scheduling – Scan EDF:  Dynamic Disk Scheduling – Scan EDF Dynamic scheduling is needed for movies with different properties Scan-EDF algorithm uses deadlines & cylinder numbers for scheduling Collect requests whose deadlines are relatively close together into batches and process these in cylinder order using the elevator algorithm

Related presentations


Other presentations created by Laurie

Biofilm Dynamics
29. 10. 2007
0 views

Biofilm Dynamics

Lazarus Suellen
13. 04. 2008
0 views

Lazarus Suellen

SCOR OverviewEC
30. 03. 2008
0 views

SCOR OverviewEC

FAOCS new program
27. 03. 2008
0 views

FAOCS new program

skawinski
18. 03. 2008
0 views

skawinski

Photonics1
14. 03. 2008
0 views

Photonics1

KoreaVisualsIR English
12. 03. 2008
0 views

KoreaVisualsIR English

memberbenefits
11. 03. 2008
0 views

memberbenefits

Basics of Molecular Imaging
04. 03. 2008
0 views

Basics of Molecular Imaging

CI and Dev DEF 2
26. 02. 2008
0 views

CI and Dev DEF 2

wright
03. 10. 2007
0 views

wright

chhimala
03. 10. 2007
0 views

chhimala

stress reduction
05. 12. 2007
0 views

stress reduction

ML inventory
10. 12. 2007
0 views

ML inventory

Aircraft fuel systems
07. 11. 2007
0 views

Aircraft fuel systems

AFG 04 MODELO PRACTICO SEPT 2006
12. 11. 2007
0 views

AFG 04 MODELO PRACTICO SEPT 2006

Neurosurgery
14. 11. 2007
0 views

Neurosurgery

Derek Matthews
15. 11. 2007
0 views

Derek Matthews

lrn11retrieval
15. 11. 2007
0 views

lrn11retrieval

Osteoarthritis Atlanta
13. 12. 2007
0 views

Osteoarthritis Atlanta

Till
25. 12. 2007
0 views

Till

POL103 6th presentation Iran
29. 12. 2007
0 views

POL103 6th presentation Iran

Parasitology CNS Cestoda
07. 01. 2008
0 views

Parasitology CNS Cestoda

Wongf food overview
07. 01. 2008
0 views

Wongf food overview

liste prix coffre
05. 01. 2008
0 views

liste prix coffre

3 Social Movements
27. 12. 2007
0 views

3 Social Movements

DanceW
23. 11. 2007
0 views

DanceW

8 Predator Prey
01. 01. 2008
0 views

8 Predator Prey

teliasonera finland
19. 02. 2008
0 views

teliasonera finland

JeepProfilemktg374
16. 11. 2007
0 views

JeepProfilemktg374

QLogic2005
01. 01. 2008
0 views

QLogic2005

Turkey Starting Conference
23. 11. 2007
0 views

Turkey Starting Conference

Fujii
30. 12. 2007
0 views

Fujii

APres ANS propostas
29. 12. 2007
0 views

APres ANS propostas

Pulerwitz
04. 01. 2008
0 views

Pulerwitz

Matthew 2
01. 10. 2007
0 views

Matthew 2

CLADE07 barla
03. 01. 2008
0 views

CLADE07 barla

Summary
04. 12. 2007
0 views

Summary

Se parlassimo tutti Celtico4
05. 11. 2007
0 views

Se parlassimo tutti Celtico4

geese
16. 11. 2007
0 views

geese

635 Techno010514
20. 11. 2007
0 views

635 Techno010514

CH05 65 CharitableFunds slides
02. 11. 2007
0 views

CH05 65 CharitableFunds slides

ERL07 May17 07
21. 11. 2007
0 views

ERL07 May17 07

gca powerpoint
04. 10. 2007
0 views

gca powerpoint

donacijahupt
28. 11. 2007
0 views

donacijahupt

BIPN100 Lecture4
02. 11. 2007
0 views

BIPN100 Lecture4