CPU Scheduling

Information about CPU Scheduling

Published on March 5, 2009

Author: ankush85

Source: authorstream.com

Content

CPU Scheduling : CPU Scheduling CPU Scheduling : CPU Scheduling Basic Concepts Scheduling Criteria Scheduling Algorithms Multiple-Processor Scheduling Real-Time Scheduling Thread Scheduling Operating Systems Examples Java Thread Scheduling Algorithm Evaluation Basic Concepts : Basic Concepts Maximum CPU utilization obtained with multiprogramming CPU–I/O Burst Cycle – Process execution consists of a cycle of CPU execution and I/O wait CPU burst distribution Alternating Sequence of CPU And I/O Bursts : Alternating Sequence of CPU And I/O Bursts Histogram of CPU-burst Times : Histogram of CPU-burst Times CPU Scheduler : CPU Scheduler Selects from among the processes in memory that are ready to execute, and allocates the CPU to one of them CPU scheduling decisions may take place when a process: 1. Switches from running to waiting state 2. Switches from running to ready state 3. Switches from waiting to ready 4. Terminates Scheduling under 1 and 4 is nonpreemptive All other scheduling is preemptive Dispatcher : Dispatcher Dispatcher module gives control of the CPU to the process selected by the short-term scheduler; this involves: switching context switching to user mode jumping to the proper location in the user program to restart that program Dispatch latency – time it takes for the dispatcher to stop one process and start another running Scheduling Criteria : Scheduling Criteria CPU utilization – keep the CPU as busy as possible Throughput – # of processes that complete their execution per time unit Turnaround time – amount of time to execute a particular process Waiting time – amount of time a process has been waiting in the ready queue Response time – amount of time it takes from when a request was submitted until the first response is produced, not output (for time-sharing environment) Optimization Criteria : Optimization Criteria Max CPU utilization Max throughput Min turnaround time Min waiting time Min response time First-Come, First-Served (FCFS) Scheduling : First-Come, First-Served (FCFS) Scheduling Process Burst Time P1 24 P2 3 P3 3 Suppose that the processes arrive in the order: P1 , P2 , P3 The Gantt Chart for the schedule is: Waiting time for P1 = 0; P2 = 24; P3 = 27 Average waiting time: (0 + 24 + 27)/3 = 17 FCFS Scheduling (Cont.) : FCFS Scheduling (Cont.) Suppose that the processes arrive in the order P2 , P3 , P1 The Gantt chart for the schedule is: Waiting time for P1 = 6; P2 = 0; P3 = 3 Average waiting time: (6 + 0 + 3)/3 = 3 Much better than previous case Convoy effect short process behind long process Shortest-Job-First (SJR) Scheduling : Shortest-Job-First (SJR) Scheduling Associate with each process the length of its next CPU burst. Use these lengths to schedule the process with the shortest time Two schemes: nonpreemptive – once CPU given to the process it cannot be preempted until completes its CPU burst preemptive – if a new process arrives with CPU burst length less than remaining time of current executing process, preempt. This scheme is know as the Shortest-Remaining-Time-First (SRTF) SJF is optimal – gives minimum average waiting time for a given set of processes Example of Non-Preemptive SJF : Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 SJF (non-preemptive) Average waiting time = (0 + 6 + 3 + 7)/4 = 4 Example of Non-Preemptive SJF Example of Preemptive SJF : Example of Preemptive SJF Process Arrival Time Burst Time P1 0.0 7 P2 2.0 4 P3 4.0 1 P4 5.0 4 SJF (preemptive) Average waiting time = (9 + 1 + 0 +2)/4 = 3 Determining Length of Next CPU Burst : Determining Length of Next CPU Burst Can only estimate the length Can be done by using the length of previous CPU bursts, using exponential averaging Prediction of the Length of the Next CPU Burst : Prediction of the Length of the Next CPU Burst Examples of Exponential Averaging : Examples of Exponential Averaging ? =0 ?n+1 = ?n Recent history does not count ? =1 ?n+1 = ? tn Only the actual last CPU burst counts If we expand the formula, we get: ?n+1 = ? tn+(1 - ?)? tn -1 + … +(1 - ? )j ? tn -j + … +(1 - ? )n +1 ?0 Since both ? and (1 - ?) are less than or equal to 1, each successive term has less weight than its predecessor Priority Scheduling : Priority Scheduling A priority number (integer) is associated with each process The CPU is allocated to the process with the highest priority (smallest integer ? highest priority) Preemptive nonpreemptive SJF is a priority scheduling where priority is the predicted next CPU burst time Problem ? Starvation – low priority processes may never execute Solution ? Aging – as time progresses increase the priority of the process Round Robin (RR) : Round Robin (RR) Each process gets a small unit of CPU time (time quantum), usually 10-100 milliseconds. After this time has elapsed, the process is preempted and added to the end of the ready queue. If there are n processes in the ready queue and the time quantum is q, then each process gets 1/n of the CPU time in chunks of at most q time units at once. No process waits more than (n-1)q time units. Performance q large ? FIFO q small ? q must be large with respect to context switch, otherwise overhead is too high Example of RR with Time Quantum = 20 : Example of RR with Time Quantum = 20 Process Burst Time P1 53 P2 17 P3 68 P4 24 The Gantt chart is: Typically, higher average turnaround than SJF, but better response Time Quantum and Context Switch Time : Time Quantum and Context Switch Time Turnaround Time Varies With The Time Quantum : Turnaround Time Varies With The Time Quantum Multilevel Queue : Multilevel Queue Ready queue is partitioned into separate queues:foreground (interactive)background (batch) Each queue has its own scheduling algorithm foreground – RR background – FCFS Scheduling must be done between the queues Fixed priority scheduling; (i.e., serve all from foreground then from background). Possibility of starvation. Time slice – each queue gets a certain amount of CPU time which it can schedule amongst its processes; i.e., 80% to foreground in RR 20% to background in FCFS Multilevel Queue Scheduling : Multilevel Queue Scheduling Multilevel Feedback Queue : Multilevel Feedback Queue A process can move between the various queues; aging can be implemented this way Multilevel-feedback-queue scheduler defined by the following parameters: number of queues scheduling algorithms for each queue method used to determine when to upgrade a process method used to determine when to demote a process method used to determine which queue a process will enter when that process needs service Example of Multilevel Feedback Queue : Example of Multilevel Feedback Queue Three queues: Q0 – RR with time quantum 8 milliseconds Q1 – RR time quantum 16 milliseconds Q2 – FCFS Scheduling A new job enters queue Q0 which is served FCFS. When it gains CPU, job receives 8 milliseconds. If it does not finish in 8 milliseconds, job is moved to queue Q1. At Q1 job is again served FCFS and receives 16 additional milliseconds. If it still does not complete, it is preempted and moved to queue Q2. Multilevel Feedback Queues : Multilevel Feedback Queues Multiple-Processor Scheduling : Multiple-Processor Scheduling CPU scheduling more complex when multiple CPUs are available Homogeneous processors within a multiprocessor Load sharing Asymmetric multiprocessing – only one processor accesses the system data structures, alleviating the need for data sharing Real-Time Scheduling : Real-Time Scheduling Hard real-time systems – required to complete a critical task within a guaranteed amount of time Soft real-time computing – requires that critical processes receive priority over less fortunate ones Thread Scheduling : Thread Scheduling Local Scheduling – How the threads library decides which thread to put onto an available LWP Global Scheduling – How the kernel decides which kernel thread to run next Pthread Scheduling API : Pthread Scheduling API #include <pthread.h> #include <stdio.h> #define NUM THREADS 5 int main(int argc, char *argv[]) { int i; pthread t tid[NUM THREADS]; pthread attr t attr; /* get the default attributes */ pthread attr init(&attr); /* set the scheduling algorithm to PROCESS or SYSTEM */ pthread attr setscope(&attr, PTHREAD SCOPE SYSTEM); /* set the scheduling policy - FIFO, RT, or OTHER */ pthread attr setschedpolicy(&attr, SCHED OTHER); /* create the threads */ for (i = 0; i < NUM THREADS; i++) pthread create(&tid[i],&attr,runner,NULL); Pthread Scheduling API : Pthread Scheduling API /* now join on each thread */ for (i = 0; i < NUM THREADS; i++) pthread join(tid[i], NULL); } /* Each thread will begin control in this function */ void *runner(void *param) { printf("I am a thread\n"); pthread exit(0); } Operating System Examples : Operating System Examples Solaris scheduling Windows XP scheduling Linux scheduling Solaris 2 Scheduling : Solaris 2 Scheduling Solaris Dispatch Table : Solaris Dispatch Table Windows XP Priorities : Windows XP Priorities Linux Scheduling : Linux Scheduling Two algorithms: time-sharing and real-time Time-sharing Prioritized credit-based – process with most credits is scheduled next Credit subtracted when timer interrupt occurs When credit = 0, another process chosen When all processes have credit = 0, recrediting occurs Based on factors including priority and history Real-time Soft real-time Posix.1b compliant – two classes FCFS and RR Highest priority process always runs first The Relationship Between Priorities and Time-slice length : The Relationship Between Priorities and Time-slice length List of Tasks Indexed According to Prorities : List of Tasks Indexed According to Prorities Algorithm Evaluation : Algorithm Evaluation Deterministic modeling – takes a particular predetermined workload and defines the performance of each algorithm for that workload Queueing models Implementation 5.15 : 5.15 End of Chapter 5 : End of Chapter 5 5.08 : 5.08 In-5.7 : In-5.7 In-5.8 : In-5.8 In-5.9 : In-5.9 Dispatch Latency : Dispatch Latency Java Thread Scheduling : Java Thread Scheduling JVM Uses a Preemptive, Priority-Based Scheduling Algorithm FIFO Queue is Used if There Are Multiple Threads With the Same Priority Java Thread Scheduling (cont) : Java Thread Scheduling (cont) JVM Schedules a Thread to Run When: The Currently Running Thread Exits the Runnable State A Higher Priority Thread Enters the Runnable State * Note – the JVM Does Not Specify Whether Threads are Time-Sliced or Not Time-Slicing : Time-Slicing Since the JVM Doesn’t Ensure Time-Slicing, the yield() Method May Be Used: while (true) { // perform CPU-intensive task . . . Thread.yield(); } This Yields Control to Another Thread of Equal Priority Thread Priorities : Thread Priorities Priority Comment Thread.MIN_PRIORITY Minimum Thread Priority Thread.MAX_PRIORITY Maximum Thread Priority Thread.NORM_PRIORITY Default Thread Priority Priorities May Be Set Using setPriority() method: setPriority(Thread.NORM_PRIORITY + 2);

Related presentations


Other presentations created by ankush85

Nanotechnology
03. 04. 2009
0 views

Nanotechnology

Human Resource Management System
06. 03. 2009
0 views

Human Resource Management System

Nanotechnology
27. 03. 2009
0 views

Nanotechnology

INTRODUCTION TO NANOTECHNOLOGY
20. 11. 2009
0 views

INTRODUCTION TO NANOTECHNOLOGY

Nanotechnology in Sports
22. 11. 2009
0 views

Nanotechnology in Sports

Computer Architecture
14. 07. 2009
0 views

Computer Architecture

HR
18. 03. 2009
0 views

HR

Hospital Management System
08. 04. 2009
0 views

Hospital Management System

Welcome to Visual Basic
06. 03. 2009
0 views

Welcome to Visual Basic

HTML
20. 04. 2009
0 views

HTML

Computer Languages
03. 06. 2013
0 views

Computer Languages

Taking Care of Computer
03. 06. 2013
0 views

Taking Care of Computer

Understanding Camera
16. 10. 2012
0 views

Understanding Camera

Photography Technical Terms
25. 09. 2012
0 views

Photography Technical Terms

Basics of Photography
25. 09. 2012
0 views

Basics of Photography

AIR MUSCLES
03. 01. 2012
0 views

AIR MUSCLES

Molecular Nanotechnology
24. 11. 2009
0 views

Molecular Nanotechnology

Nanotech Innovation
22. 11. 2009
0 views

Nanotech Innovation

FINANCIAL  MARKET
16. 05. 2009
0 views

FINANCIAL MARKET

Operating System
19. 04. 2009
0 views

Operating System

Management Control
10. 07. 2009
0 views

Management Control

Accounting Principles
01. 07. 2009
0 views

Accounting Principles

Balance Sheet
21. 07. 2009
0 views

Balance Sheet

Balance Sheet Auditing
01. 07. 2009
0 views

Balance Sheet Auditing

BRANCH AND BOUND
05. 03. 2009
0 views

BRANCH AND BOUND

THE  THREE  BRANCHES  OF GOVERNMENT
13. 06. 2009
0 views

THE THREE BRANCHES OF GOVERNMENT

Structure of Atom
11. 05. 2009
0 views

Structure of Atom

Compression Techniques
05. 03. 2009
0 views

Compression Techniques

DYNAMIC PROGRAMMING
06. 03. 2009
0 views

DYNAMIC PROGRAMMING

Quantum Mechanics
25. 08. 2009
0 views

Quantum Mechanics

Marketing Plan
19. 06. 2009
0 views

Marketing Plan

Book Keeping
24. 06. 2009
0 views

Book Keeping

DFDS
02. 10. 2008
0 views

DFDS

Semiconductors
25. 04. 2009
0 views

Semiconductors

Organic  Chemistry
28. 04. 2009
0 views

Organic Chemistry

Atoms Molecules and Ions
17. 06. 2009
0 views

Atoms Molecules and Ions

Covalent Bond
25. 04. 2009
0 views

Covalent Bond

Cost Accounting Standards
25. 06. 2009
0 views

Cost Accounting Standards

Crisis Management
19. 06. 2009
0 views

Crisis Management

Marketing
18. 03. 2009
0 views

Marketing

Business Strategy
27. 04. 2009
0 views

Business Strategy

Time Management
23. 03. 2009
0 views

Time Management

Networking Protocols
23. 05. 2009
0 views

Networking Protocols

Network Layer
23. 05. 2009
0 views

Network Layer

Final Accounts
24. 06. 2009
0 views

Final Accounts

ARTIFICIAL  INTELLIGENCE
03. 04. 2009
0 views

ARTIFICIAL INTELLIGENCE

Play with C
08. 04. 2009
0 views

Play with C

Software Development Cycle
23. 03. 2009
0 views

Software Development Cycle

THE GREEDY METHOD
06. 03. 2009
0 views

THE GREEDY METHOD

JOB SEQUENCING
06. 03. 2009
0 views

JOB SEQUENCING

Electricity and Magnetism
29. 04. 2009
0 views

Electricity and Magnetism

Optical Fiber
24. 05. 2009
0 views

Optical Fiber

Quality Assurance
06. 03. 2009
0 views

Quality Assurance

Object-oriented Design
11. 04. 2009
0 views

Object-oriented Design

A.R. Rahman
08. 03. 2009
0 views

A.R. Rahman

Hollywood Female Celebrities
13. 03. 2009
0 views

Hollywood Female Celebrities

Flow nets
04. 09. 2009
0 views

Flow nets

Energy and Nanotechnology
22. 11. 2009
0 views

Energy and Nanotechnology

LOGIC  DESIGN
06. 03. 2009
0 views

LOGIC DESIGN

VB-IDE
06. 03. 2009
0 views

VB-IDE

DLF IPL FINAL
25. 05. 2009
0 views

DLF IPL FINAL

MINIMUM SPANNING TREES
06. 03. 2009
0 views

MINIMUM SPANNING TREES

Virtual Memory
05. 03. 2009
0 views

Virtual Memory

POK
09. 05. 2009
0 views

POK

2D Transformations
05. 03. 2009
0 views

2D Transformations

Greedy Algorithms
05. 03. 2009
0 views

Greedy Algorithms

BACKTRACKING
05. 03. 2009
0 views

BACKTRACKING

DIVIDE And CONQUER
06. 03. 2009
0 views

DIVIDE And CONQUER

ELEMENTARY DATA STRUCTURES
06. 03. 2009
0 views

ELEMENTARY DATA STRUCTURES

JPEG Compression
06. 03. 2009
0 views

JPEG Compression

Mpeg-compression
06. 03. 2009
0 views

Mpeg-compression

NP - HARD
06. 03. 2009
0 views

NP - HARD

TRAVELLING SALESPERSON PROBLEM
06. 03. 2009
0 views

TRAVELLING SALESPERSON PROBLEM

VBA Introduction
06. 03. 2009
0 views

VBA Introduction

Introduction to Java
09. 03. 2009
0 views

Introduction to Java

Java  Basics
09. 03. 2009
0 views

Java Basics

Heuristic Search
13. 03. 2009
0 views

Heuristic Search

HSM
19. 03. 2009
0 views

HSM

Tata's  Nano  Car
25. 03. 2009
0 views

Tata's Nano Car

Air Cranes
08. 04. 2009
0 views

Air Cranes

Newborn Care
10. 04. 2009
0 views

Newborn Care

Photosynthesis Process
10. 04. 2009
0 views

Photosynthesis Process

ActionScript
13. 04. 2009
0 views

ActionScript

Xml
15. 04. 2009
0 views

Xml

Snakes mis use
17. 04. 2009
0 views

Snakes mis use

Php Web Development
21. 04. 2009
0 views

Php Web Development

Cricket Intro
21. 04. 2009
0 views

Cricket Intro

Cricket Umpiring and Rules
21. 04. 2009
0 views

Cricket Umpiring and Rules

Arm and Forearm
23. 04. 2009
0 views

Arm and Forearm

Elements Ions Isotopes
25. 04. 2009
0 views

Elements Ions Isotopes

Chemical Bond
25. 04. 2009
0 views

Chemical Bond

Discovering Newtons Laws
29. 04. 2009
0 views

Discovering Newtons Laws

FreeFall
29. 04. 2009
0 views

FreeFall

Digital photography
26. 04. 2009
0 views

Digital photography

Health Effects of Alcohol
26. 04. 2009
0 views

Health Effects of Alcohol

Poetry Terminology
27. 04. 2009
0 views

Poetry Terminology

Indian Force
05. 05. 2009
0 views

Indian Force

Machine Intelligence
14. 05. 2009
0 views

Machine Intelligence

Data Link Layer
16. 05. 2009
0 views

Data Link Layer

Database Development Cycle
15. 05. 2009
0 views

Database Development Cycle

Queue
15. 05. 2009
0 views

Queue

Presentaion Skills
23. 04. 2009
0 views

Presentaion Skills

Network Layers
23. 05. 2009
0 views

Network Layers

Narmada Dam, India
23. 05. 2009
0 views

Narmada Dam, India

User Datagram Protocol
24. 05. 2009
0 views

User Datagram Protocol

Linear Momentum
28. 05. 2009
0 views

Linear Momentum

Stack and Queue
04. 06. 2009
0 views

Stack and Queue

Information Management
19. 06. 2009
0 views

Information Management

Role of Senior Management
19. 06. 2009
0 views

Role of Senior Management

Wake Up India
07. 06. 2009
0 views

Wake Up India

Adobe Flex 3.0
13. 06. 2009
0 views

Adobe Flex 3.0

Adobe Flex Presentation
13. 06. 2009
0 views

Adobe Flex Presentation

Introduction to Adobe Flex
13. 06. 2009
0 views

Introduction to Adobe Flex

Adobe Flash Media Server
13. 06. 2009
0 views

Adobe Flash Media Server

Dreamweaver
13. 06. 2009
0 views

Dreamweaver

Adobe Flash
13. 06. 2009
0 views

Adobe Flash

Flash CS4 Professional
13. 06. 2009
0 views

Flash CS4 Professional

Adobe Flash Lite
13. 06. 2009
0 views

Adobe Flash Lite

Digital Camera
13. 06. 2009
0 views

Digital Camera

Mozilla_Firefox
15. 06. 2009
0 views

Mozilla_Firefox

Managerial Accounting
27. 06. 2009
0 views

Managerial Accounting

Accounting  Information  System
01. 07. 2009
0 views

Accounting Information System

RETAILING AND MARKETING
06. 07. 2009
0 views

RETAILING AND MARKETING

ACCOUNTING IN BUSINESS
05. 07. 2009
0 views

ACCOUNTING IN BUSINESS

STRATEGIC RETAIL MANAGEMENT
05. 07. 2009
0 views

STRATEGIC RETAIL MANAGEMENT

Reiki
01. 08. 2009
0 views

Reiki

Using Buttons in PowerPoint
26. 04. 2009
0 views

Using Buttons in PowerPoint

Nanotechnology  for  Students
21. 08. 2009
0 views

Nanotechnology for Students

NANOSCIENCE
25. 08. 2009
0 views

NANOSCIENCE

Fundamentals of Nanoscience
27. 08. 2009
0 views

Fundamentals of Nanoscience

Nanoscience in Nature
27. 08. 2009
0 views

Nanoscience in Nature

Applied Mechanics
04. 09. 2009
0 views

Applied Mechanics

Accounts Payable Training
27. 06. 2009
0 views

Accounts Payable Training