hao discr prob mod rel dat

Information about hao discr prob mod rel dat

Published on September 25, 2007

Author: Dabby

Source: authorstream.com

Content

Discriminative Probabilistic Models for Relational Data:  Discriminative Probabilistic Models for Relational Data Ben Taskar, Pieter Abbeel, Daphne Koller Tradition statistic classification Methods:  Tradition statistic classification Methods Dealing with only ‘flat’ data – IID In many supervised learning tasks, entities to be labeled are related to each other in complex way and their labels are not independent This dependence is an important source of information to achieve better classification Collective Classification:  Collective Classification Rather than classify each entity separately Simultaneously decide on the class label of all the entities together Explicitly take advantage of the correlation between the labels of related entitiies Undirected vs. directed graphical models :  Undirected vs. directed graphical models Undirected graphical models do not impose the acyclicity constraint, but directed ones need acyclicity to define a coherent generative model Undirected graphical models are well suited for discriminative training, achieving better classification accuracy over generative training Our Hypertext Relational Domain:  Our Hypertext Relational Domain Label HasWord1 HasWordk ... Doc Label HasWord1 HasWordk ... Doc From To Link Schema:  Schema A set of entity types Attribute of each entity type Content attribute E.X Label attribute E.Y Reference attribute E.R Instantiation:  Instantiation Provide a set of entities I (E) for each entity type E Specify the values of all the attribute of the entities, I.x, I.y, I.r I.r is the instantiation graph, which is call relational skeleton in PRM Markov Network:  Markov Network Qualitative component – Cliques Quantitative component – Potentials Cliques:  Cliques A set of nodes in the graph G such that for each are connected by an edge in G Potentials:  Potentials The potential for the clique c defines the compatibility between values of variables in the clique Log-linearly combination of a set of features Probability in Markov Network:  Probability in Markov Network Given the values of all nodes in the Markov Network Conditional Markov Network:  Conditional Markov Network Specify the probability of a set of target variables Y given a set of conditioning variables X Relational Markov Network (RMN):  Relational Markov Network (RMN) Specifies the conditional probability over all the labels of all the entities in the instantiation given the relational structure and the content attributes Extension of the Conditional Markov Networks with a compact definition on a relational data set Relational clique template:  Relational clique template F --- a set of entity variables (From) W--- the condition about the attributes of the entity variables (Where) S --- subset of attributes (content and label attribute) of the entity variables (Select) Relationship to SQL query:  Relationship to SQL query SELECT doc1.Category,doc2.Category FROM doc1,doc2,Link link WHERE link.From=doc1.key and link.To=doc2.key Doc1 Doc2 Link Doc1 Potentials:  Potentials Potentials are defined at the level of relational clique template The cliques of the same relational clique template have the same potential functions Unrolling the RMN:  Unrolling the RMN Given an instantiation of a relational schema, unroll the RMN as follows Find all the cliques in the unrolled the relational schema where the relational clique templates are applicable The potential of a clique is the same as that of the relational clique template which this clique belongs to Slide18:  Doc1 Doc3 Doc2 link1 link2 Probability in RMN:  Probability in RMN Slide20:  Learning RMN:  Learning RMN Given a set of relational clique templates Estimate feature weight w using conjugate gradient Objective function--Product of likelihood of instantiation and parameter prior Assume a shrinkage prior over feature weights Learning RMN (Cont’d):  Learning RMN (Cont’d) The conjugate gradient of the objective function where Inference in RMN:  Inference in RMN Exact inference Intractable due to the network is very large and densely connected Approximate inference Belief propagation Experiments:  Experiments WebKB dataset Four CS department websites Five categories (faculty,student,project,course,other) Bag of words on each page Links between pages Experimental setup Trained on three universities Tested on fourth Flat Models:  Flat Models Based only on the text content on the WebPages Incorporate meta-data Relational model:  Relational model introduce relational clique template over the labels of two pages that are linked Doc2 Link Doc1 Relational model (Cont’d):  Relational model (Cont’d) relational clique template over the label of section and the label of the pages it is on Relational clique template over the label of the section containing the link and the label of the target page Slide28:  Discriminative vs. Generative:  Discriminative vs. Generative Exit+Naïve Bayes: a complete generative model proposed by Getoor et al Exit+logistic: using logistic regression for the conditional probability distribution of page label given words Link: a fully discriminative training model Slide30: 

Related presentations


Other presentations created by Dabby

Propaganda Comparativa
16. 11. 2007
0 views

Propaganda Comparativa

ch 6 ppt
15. 06. 2007
0 views

ch 6 ppt

Feudal Japan Origin Religion
09. 10. 2007
0 views

Feudal Japan Origin Religion

Riedel DASER2
25. 09. 2007
0 views

Riedel DASER2

Shen CRF
25. 09. 2007
0 views

Shen CRF

Anna
11. 10. 2007
0 views

Anna

intro CS 3
16. 10. 2007
0 views

intro CS 3

TheatreHistoryO
17. 10. 2007
0 views

TheatreHistoryO

panama 5
22. 10. 2007
0 views

panama 5

Lesson 1 Intro and Pre WW II
22. 10. 2007
0 views

Lesson 1 Intro and Pre WW II

gf5
25. 09. 2007
0 views

gf5

Correcting News Mistakes
05. 10. 2007
0 views

Correcting News Mistakes

MRCME Febrile Rash
23. 10. 2007
0 views

MRCME Febrile Rash

Microfinance MDGs
28. 11. 2007
0 views

Microfinance MDGs

kinetic models
25. 09. 2007
0 views

kinetic models

rtc
16. 10. 2007
0 views

rtc

debate
26. 10. 2007
0 views

debate

SALSA RTE Burchardt Frank
01. 11. 2007
0 views

SALSA RTE Burchardt Frank

Behav Interv Gay MA Users
02. 11. 2007
0 views

Behav Interv Gay MA Users

usits2001 talk
29. 10. 2007
0 views

usits2001 talk

ECCR IU Mar15 07
21. 11. 2007
0 views

ECCR IU Mar15 07

Lesson 1 Introduction
28. 12. 2007
0 views

Lesson 1 Introduction

99 ChemAware Chapter 03
02. 01. 2008
0 views

99 ChemAware Chapter 03

Dr G B Reddy
03. 01. 2008
0 views

Dr G B Reddy

Sloboda Prague
25. 09. 2007
0 views

Sloboda Prague

ber
02. 08. 2007
0 views

ber

05 bandura
02. 08. 2007
0 views

05 bandura

Robins
25. 09. 2007
0 views

Robins

Comp Gen Phylo HMM
25. 09. 2007
0 views

Comp Gen Phylo HMM

plkongres2007 crop 04
04. 10. 2007
0 views

plkongres2007 crop 04

lysenko
26. 11. 2007
0 views

lysenko

CNE120 11 8 04
02. 08. 2007
0 views

CNE120 11 8 04

Martin Hilbert
22. 10. 2007
0 views

Martin Hilbert

antioxidants
04. 03. 2008
0 views

antioxidants

presentation reynolds
07. 11. 2007
0 views

presentation reynolds

certeau present
03. 01. 2008
0 views

certeau present

NewBrunswick
12. 03. 2008
0 views

NewBrunswick

JVM models in ACL2
25. 09. 2007
0 views

JVM models in ACL2

ge203 08
25. 03. 2008
0 views

ge203 08

Q307 englanti
26. 03. 2008
0 views

Q307 englanti

auerickson
25. 09. 2007
0 views

auerickson

EcologicalFootprints
07. 04. 2008
0 views

EcologicalFootprints

TradeinHealthService s130207
28. 03. 2008
0 views

TradeinHealthService s130207

april cyprus lnarayanan
30. 03. 2008
0 views

april cyprus lnarayanan

BRAMBLE
31. 12. 2007
0 views

BRAMBLE

Macro course 2005 lecture 4
09. 04. 2008
0 views

Macro course 2005 lecture 4

summit2008a
10. 04. 2008
0 views

summit2008a

Wayne NY NJPresentation
13. 04. 2008
0 views

Wayne NY NJPresentation

AE2 C04 2007
14. 04. 2008
0 views

AE2 C04 2007

Rinolfi
17. 10. 2007
0 views

Rinolfi

HDX4000 Training NA
22. 04. 2008
0 views

HDX4000 Training NA

chapman poster 14jan05
25. 09. 2007
0 views

chapman poster 14jan05

BBC Series State of the Earth
08. 10. 2007
0 views

BBC Series State of the Earth

1960spowerpoint
02. 11. 2007
0 views

1960spowerpoint

hansjeppson
15. 10. 2007
0 views

hansjeppson

hegel
05. 01. 2008
0 views

hegel

exec blue 060120
18. 06. 2007
0 views

exec blue 060120

Ethiopia session II
18. 06. 2007
0 views

Ethiopia session II

emergenuity
18. 06. 2007
0 views

emergenuity

experiencia aenor
18. 06. 2007
0 views

experiencia aenor

India Work Plan UNCT
07. 01. 2008
0 views

India Work Plan UNCT

Tropsha 4 5 05
24. 11. 2007
0 views

Tropsha 4 5 05

posterH2OinPFCs
01. 01. 2008
0 views

posterH2OinPFCs

etd2004
12. 10. 2007
0 views

etd2004

chi00
19. 11. 2007
0 views

chi00

38613SciTechStudies1
16. 10. 2007
0 views

38613SciTechStudies1

educause 2004 Fedora
25. 09. 2007
0 views

educause 2004 Fedora

cours7
23. 10. 2007
0 views

cours7

comics
15. 06. 2007
0 views

comics

Columbia Political Cartoons
15. 06. 2007
0 views

Columbia Political Cartoons

Collins Math Stats2
15. 06. 2007
0 views

Collins Math Stats2

Chapter Eight student version
15. 06. 2007
0 views

Chapter Eight student version

blagues
15. 06. 2007
0 views

blagues

Anime Manga Pres
15. 06. 2007
0 views

Anime Manga Pres

1193 Cartoons pig
15. 06. 2007
0 views

1193 Cartoons pig

1 cartoon
15. 06. 2007
0 views

1 cartoon

PBOCJapan060103
09. 10. 2007
0 views

PBOCJapan060103

control
15. 06. 2007
0 views

control

jcdl contentmodels
25. 09. 2007
0 views

jcdl contentmodels

curso dq abp joao
28. 12. 2007
0 views

curso dq abp joao

conf present 045
07. 01. 2008
0 views

conf present 045

05 International Conflict
23. 11. 2007
0 views

05 International Conflict

banse1
15. 06. 2007
0 views

banse1

Feg Express
18. 06. 2007
0 views

Feg Express

Fantasztikus programozas
18. 06. 2007
0 views

Fantasztikus programozas

smp99
25. 09. 2007
0 views

smp99

efg pr005
07. 11. 2007
0 views

efg pr005

F8 Femenino
18. 06. 2007
0 views

F8 Femenino

9 3 DEPAC SLPRS Ppresentation
29. 11. 2007
0 views

9 3 DEPAC SLPRS Ppresentation

geer sesiposter
25. 09. 2007
0 views

geer sesiposter