IJOER-JAN-2016-22

Information about IJOER-JAN-2016-22

Published on January 31, 2016

Author: IJOER

Source: authorstream.com

Content

slide 1: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 82 Sentiment Analysis Methodology of Twitter Data with an application on Hajj season Mahmoud Elgamal The Custodian of the Two Holy Mosques Institute for Hajj and Omra Research Umm Al -Qura University Makkah Saudi Arabia Abstract — With the rapid growth of the internet millions of people are sharing their views and opinions on a variety of topics on microblogging sites as it contains simple expressions. Microblogging websites are just social media sites to which user makes real time short and frequent posts about everything. In big event gathering like Hajj to get rapid and accurate views and impressions of hajji about some quality of service or other views is of a great importance as time and space are limited. In this paper we utilize tweets during Hajj to do sentiment analysis the tweets are preprocessed by experience three phases tokenization normalization and part of speech POS tagging. In the final step Naïve Bayes classifier used to classify tweet as positive or negative by comparing each word in the query tweet with the labeled words in the lexicon. Keywords — Naïve Bayes Classifier Performance Analysis Sentiment Analysis Twitter. I. INTRODUCTION In the last few years twitter has been hugely increased as a social network enables users to send and read 140 character messages in real time. Moreover users can share their opinions about many topics e.g. sports social etc discuss complains and express positive attitudes. Inspired by the huge growth of twitter companies and organizations are increasingly seeking ways to mine twitter for information about peoples opinion about their services and products. In KSA there are permanent Hajj and Umra seasons where people come to do their religious rituals they stay more than weeks in KSA. The Hajji express their impressions many aspects like hotels transport.etc is an important source of information for decision maker if it is mined and analyzed to get the Hajji feedback about many topics. Among uses of sentiment analysis is that the business improvement of an organization can be tracked by user’s feedback 1 3 6. This paper discusses twitter sentiment analysis in details for English language as it has a plenty of available resources. In the future work it is planned to extend the work for Arabic language. The paper is organized as follows: section 2 describe system architecture section 3 feature extraction of tweets data section 4 classification section 5 experiment and conclusion in section 6. II. SYSTEM ARCHITECTURE Our system is organized in five main components: preprocessing of tweets feature extraction training set which is a set of predefined positive or negative tweets used for building the sentence database against it the classification of a query tweet is done classifier using naive Bayes or support vector machines SVMs and the outputpositive or negative. These components are connected in pipeline architecture see figure 1. The classifier determines the polarity class of the tweet message as a final output. slide 2: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 83 FIGURE 1 SYSTEM ARCHITECTURE III. PREPROCESSING OF TWEETS DATA AND FEATURE EXTRACTION It is well known that a tweet consists of 1 Emoticons: express the users mood. 2 Target: symbol "" used by twitter to refer to user. 3 Hashtags:"" used to mark topics and increase tweet visibility. 4 Tweet: short message express users opinion about some topic. Twitter data are prepared with the aid of two dictionaries i.e. emoticon dictionary and acronym dictionary. The emoticon dictionary contains about 170 labeled emoticons 9 ":" labeled as positive and ":" labeled as negative. The acronym dictionary 1 has 5148 acronyms e.g. WOWWonder of Wonders. Tweets handled as follows 1: 1. Look up for emoticons and their sentiment polarity positive negative or neutral in emoticons dictionary. 2. Replace all URLs with a tag ||u||. 3. Replace targetse.g. "Mark" with tag ||T||. 4. Replace all negations by tag "Not". After performing the former steps we remove hashtags URLs and make spell check. The next step is to make emoticons tagging and POSpart-of-speech tagging POS tagging is the most difficult part as one have to assign it to each word in a sentence. For example a sentence like "Heat water in a large vessel" will be heatverb waternoun inprep. adet. largeadj. vesselnoun words associated with their tags. In the final step POS used to build a sentence database namely verbs adjectives emoticons..etc. In information retrieval IR POS used to compute a term weights which are mathematical computations of how informative words are and constitute an integral part of the statistical modelling of documents by IR systems. 3.1 Construction of n-grams: set of n-grams can be made out of consecutive words. Negation words such as “no” “not” is attached to a word which follows or precedes it. For example: “I do not like soda” has two bigrams: “I do+not” “do+not like” “not+like soda”. So the accuracy of the classification improves by such procedure because negation plays an important role in sentiment analysis. Tweet Preprocessing remove tags URLs spellcheck POS tag Feature Extraction Feature Extraction Training Set Word Features -ve tweets +ve tweets Classifier +ve -ve slide 3: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 84 3.1.1 Example Bi-gram: let the sentence: "Under committee rules it went automatically to a subcommittee for one week." We run a snippet of Python NLTK7 code on it to get the Bi-gram model with conditional frequency distribution CFD is shown in table 1. TABLE 1 CFD OF THE SENTENCE BIGRAM MODEL Bi-gram model Conditional Frequency Distribution Under committee 0.0001 committee rules 0.0001 rules 0.0001 it 0.022727273 it went 0.0001 went automatically 0.0001 automatically to 0.0001 to a 0.0001 a subcommittee 0.0001 subcommittee for 0.0001 for one 0.0001 one week 0.0001 week . 0.0001 In order to know the probability of word x followed by word y in the corpus we need use bigram model. IV. CLASSIFICATION A sentiment classifier using the multinomial Naïve Bayes classifier was nominated for classification. Naïve Bayes classifier yielded better results than support vector machines 5. Naive Bayes model is a simplest model for the categorization of the text this model works well. Naïve Bayes classifiers assume that the effect of a variable value on a given class is independent of the values of other variable. This assumption is called class conditional independence. Naïve Bayes classifier is based on Bayes’ theorem and given by8: where d denote the tweet f represent a feature nid is the count of feature fi found in tweet d and m is the total number of features pc and pf|c are obtained through maximum estimates. 4.1 Example for classification: Assume that we have the following sentences that will be used as a training set: Training set I like spring. I do not like this cafe I am tired of this stuff. This is an amazing place I feel very good about these fruits. This is my best work. I cant deal with this He is my sworn enemy My boss is horrible. What an awesome view First we label each sentence from training set as either positive or negative and arrange positive and negative sentences as follows: training_data I like spring. pos This is an amazing place pos slide 4: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 85 I feel very good about these fruits. pos This is my best work. pos "What an awesome view" pos I do not like this cafe neg I am tired of this stuff. neg "I cant deal with this" neg He is my sworn enemy neg My boss is horrible. neg The classifier trained on the training_data and we tested it on the sentence: test_sentence "This is the best place Ive ever visted” The output was: FIGURE 2: CLASSIFICATION TEST V. EXPERIMENT The experiment done on a data2 where the data consists of positive polarity of 5331 positive snippets and negative polarity of 5331 negative snippets. Each line in these two files corresponds to a single snippet usually containing roughly one single sentence all snippets are down-cased the snippets were labeled automatically. Then we run Naïve Bayes classifier on the data. Next to evaluate the classifier performance there are a number of other metrics used to evaluate classifiers the most common are precision recall and accuracy. To understand these metrics we must first understand false positives FP and false negatives FN. False positives happen when a classifier classifies a feature set with a label it should not have. False negatives happen when a classifier does not assign a label to a feature set that should have it. In a binary classifier these errors happen at the same time. We evaluate the performance of the classifier in terms of precision recall and accuracy 4 as: • Precision P is the number of relevant documents retrieved by the system divided by the total number of documents retrieved i.e. true positives plus false alarms. FP TP TP P  1 • RecallR is the number of relevant documents retrieved by the system divided by the total number of relevant documents in the database which should have been retrieved. FN TP TP R  2 • AccuracyA is the probability that the retrieval is correctly performed FN FP TN TP TN TP A     3 slide 5: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 86 where TP True Positive - correctly classified positive TN True Negative - correctly classified negative FP False Positive - incorrectly classified negative and FN False Negative - incorrectly classified positive. The Naïve Bayes classifier run on the data to get the top 10100 1000 10000 15000 word features table 2 below and figures 2 3 depicts the result. TABLE 2 ACCURACY PRECISION AND RECALL OF TOP 10100 1000 10000 15000 WORD FEATURES. word features Accuracy precision +ve recall +ve precision -ve recall -ve 10_WF 0.57464 0.54938 0.83046 0.65284 0.31883 100_WF 0.6823 0.65987 0.75244 0.71204 0.61215 1000_WF 0.79745 0.81695 0.76669 0.78021 0.82821 10000_WF 0.84696 0.86911 0.81695 0.82732 0.87697 15000_WF 0.84659 0.86378 0.82296 0.83095 0.87022 FIGURE 3: ACCURACY VERSUS NUMBER OF WORD FEATURES. FIGURE 4: PRECISION AND RECALL OF POSITIVE AND NEGATIVE CLASSIFICATION. slide 6: International Journal of Engineering Research Science IJOER ISSN - 2395-6992 Vol-2 Issue-1 January- 2016 Page | 87 VI. CONCLUSION In this paper we studied the methodology of sentiment analysis and the result was consistent for English corpus that was available for the study. We plan to do the same work for other languages in Hajj especially Arabic that are the majority of Hajji. Moreover we plan to do our work on line in the next step. REFERENCES 1 Agarwal A. Xie B. Vovsha I. Rambow O. and Passonneau R. "Sentiment analysis of twitter data" In Proceedings of the Workshop on Language in Social Media LSM 2011 pages 30–38 Portland Oregon. Association for Computational Linguistics. 2 AFINN Data Set 2011: http://www2.imm.dtu.dk/pubdb/views/publication_details.phpid6010 3 A. Kumar and T. M. Sebastian “Sentiment Analysis on Twitter” department of Computer Engineering Delhi Technological University Delhi India IJCSI International Journal of Computer Science Issues Vol. 9 Issue 4 No 3 July 2012 4 Olson David L. and Delen Dursun 2008 "Advanced Data Mining Techniques” Springer 1st edition February 1 2008 page 138 ISBN 3-540-76916-1. 5 Pak and P. Paroubek “Twitter as a Corpus for Sentiment Analysis and Opinion Mining” In Proceedings of the Seventh Conference on International Language Resources and Evaluation 2010. 6 B. Pang and L. Lee "Seeing stars: Exploiting class relationships for sentiment categorization with respect to rating scales " Proceedings of the ACL 2005. 7 Natural Language Toolkit http://www.nltk.org/ 8 V. Sahayak V. Shete and A. Pathan "Sentiment Analysis on Twitter Data" IJIRAE 2015. 9 Wikipedia 2015 https://en.wikipedia.org/

Related presentations


Other presentations created by IJOER

IJOER-MAY-2016-40
06. 06. 2016
0 views

IJOER-MAY-2016-40

IJOER-MAY-2016-62
06. 06. 2016
0 views

IJOER-MAY-2016-62

IJOER-MAY-2016-61
06. 06. 2016
0 views

IJOER-MAY-2016-61

IJOER-MAY-2016-64
06. 06. 2016
0 views

IJOER-MAY-2016-64

IJOER-JUL-2015-14
01. 08. 2015
0 views

IJOER-JUL-2015-14

IJOER-JUL-2015-13
01. 08. 2015
0 views

IJOER-JUL-2015-13

IJOER-JUL-2015-10
01. 08. 2015
0 views

IJOER-JUL-2015-10

IJOER-JUL-2015-3
01. 08. 2015
0 views

IJOER-JUL-2015-3

IJOER-MAY-2016-52
03. 06. 2016
0 views

IJOER-MAY-2016-52

IJOER-MAY-2016-17
03. 06. 2016
0 views

IJOER-MAY-2016-17

IJOER-MAY-2016-60
03. 06. 2016
0 views

IJOER-MAY-2016-60

IJOER-SEP-2015-5
03. 10. 2015
0 views

IJOER-SEP-2015-5

IJOER-AUG-2015-10
03. 10. 2015
0 views

IJOER-AUG-2015-10

IJOER-AUG-2015-21
31. 08. 2015
0 views

IJOER-AUG-2015-21

IJOER-AUG-2015-19
31. 08. 2015
0 views

IJOER-AUG-2015-19

IJOER-AUG-2015-18
31. 08. 2015
0 views

IJOER-AUG-2015-18

IJOER-AUG-2015-17
31. 08. 2015
0 views

IJOER-AUG-2015-17

IJOER-AUG-2015-11
31. 08. 2015
0 views

IJOER-AUG-2015-11

IJOER-NOV-2015-2
05. 12. 2015
0 views

IJOER-NOV-2015-2

IJOER-NOV-2015-21
05. 12. 2015
0 views

IJOER-NOV-2015-21

IJOER-NOV-2015-9
05. 12. 2015
0 views

IJOER-NOV-2015-9

IJOER-NOV-2015-4
05. 12. 2015
0 views

IJOER-NOV-2015-4

IJOER-OCT-2015-27
05. 12. 2015
0 views

IJOER-OCT-2015-27

IJOER-DEC-2015-26
02. 01. 2016
0 views

IJOER-DEC-2015-26

IJOER-DEC-2015-25
02. 01. 2016
0 views

IJOER-DEC-2015-25

IJOER-DEC-2015-23
02. 01. 2016
0 views

IJOER-DEC-2015-23

IJOER-DEC-2015-20
02. 01. 2016
0 views

IJOER-DEC-2015-20

IJOER-DEC-2015-19
02. 01. 2016
0 views

IJOER-DEC-2015-19

IJOER-DEC-2015-30
02. 01. 2016
0 views

IJOER-DEC-2015-30

IJOER-DEC-2015-28
02. 01. 2016
0 views

IJOER-DEC-2015-28

IJOER-DEC-2015-14
02. 01. 2016
0 views

IJOER-DEC-2015-14

IJOER-DEC-2015-13
02. 01. 2016
0 views

IJOER-DEC-2015-13

IJOER-DEC-2015-6
02. 01. 2016
0 views

IJOER-DEC-2015-6

IJOER-NOV-2015-20
02. 01. 2016
0 views

IJOER-NOV-2015-20

IJOER-NOV-2015-19
02. 01. 2016
0 views

IJOER-NOV-2015-19

IJOER-DEC-2015-42
02. 01. 2016
0 views

IJOER-DEC-2015-42

IJOER-DEC-2015-38
02. 01. 2016
0 views

IJOER-DEC-2015-38

IJOER-DEC-2015-33
02. 01. 2016
0 views

IJOER-DEC-2015-33

IJOER-DEC-2015-31
02. 01. 2016
0 views

IJOER-DEC-2015-31

IJOER-DEC-2015-39
03. 01. 2016
0 views

IJOER-DEC-2015-39

IJOER-NOV-2015-17
31. 01. 2016
0 views

IJOER-NOV-2015-17

IJOER-JAN-2016-45
31. 01. 2016
0 views

IJOER-JAN-2016-45

IJOER-JAN-2016-44
31. 01. 2016
0 views

IJOER-JAN-2016-44

IJOER-JAN-2016-41
31. 01. 2016
0 views

IJOER-JAN-2016-41

IJOER-JAN-2016-40
31. 01. 2016
0 views

IJOER-JAN-2016-40

IJOER-JAN-2016-33
31. 01. 2016
0 views

IJOER-JAN-2016-33

IJOER-JAN-2016-30
31. 01. 2016
0 views

IJOER-JAN-2016-30

IJOER-JAN-2016-28
31. 01. 2016
0 views

IJOER-JAN-2016-28

IJOER-JAN-2016-54
03. 02. 2016
0 views

IJOER-JAN-2016-54

IJOER-JAN-2016-9
31. 01. 2016
0 views

IJOER-JAN-2016-9

IJOER-DEC-2015-37
31. 01. 2016
0 views

IJOER-DEC-2015-37

IJOER-FEB-2016-46
03. 03. 2016
0 views

IJOER-FEB-2016-46

IJOER-FEB-2016-38
03. 03. 2016
0 views

IJOER-FEB-2016-38

IJOER-FEB-2016-33
03. 03. 2016
0 views

IJOER-FEB-2016-33

IJOER-FEB-2016-31
03. 03. 2016
0 views

IJOER-FEB-2016-31

IJOER-FEB-2016-25
03. 03. 2016
0 views

IJOER-FEB-2016-25

IJOER-FEB-2016-20
03. 03. 2016
0 views

IJOER-FEB-2016-20

IJOER-MAR-2016-46
16. 04. 2016
0 views

IJOER-MAR-2016-46

IJOER-MAR-2016-41
02. 05. 2016
0 views

IJOER-MAR-2016-41

IJOER-MAR-2016-36
02. 05. 2016
0 views

IJOER-MAR-2016-36

IJOER-MAR-2016-29
02. 05. 2016
0 views

IJOER-MAR-2016-29

IJOER-MAR-2016-23
02. 05. 2016
0 views

IJOER-MAR-2016-23

IJOER-MAR-2016-14
02. 05. 2016
0 views

IJOER-MAR-2016-14

IJOER-MAR-2016-2
02. 05. 2016
0 views

IJOER-MAR-2016-2

IJOER-FEB-2016-66
02. 05. 2016
0 views

IJOER-FEB-2016-66

IJOER-FEB-2016-41
02. 05. 2016
0 views

IJOER-FEB-2016-41

IJOER-APR-2016-35
02. 05. 2016
0 views

IJOER-APR-2016-35

IJOER-MAY-2016-6
30. 05. 2016
0 views

IJOER-MAY-2016-6

IJOER-MAY-2016-3
30. 05. 2016
0 views

IJOER-MAY-2016-3

IJOER-MAY-2016-22
30. 05. 2016
0 views

IJOER-MAY-2016-22

IJOER-MAY-2016-20
30. 05. 2016
0 views

IJOER-MAY-2016-20

IJOER-MAY-2016-16
30. 05. 2016
0 views

IJOER-MAY-2016-16

IJOER-MAY-2016-11
30. 05. 2016
0 views

IJOER-MAY-2016-11

IJOER-MAY-2016-1
30. 05. 2016
0 views

IJOER-MAY-2016-1

IJOER-FEB-2016-36
30. 05. 2016
0 views

IJOER-FEB-2016-36

IJOER-DEC-2015-36
29. 06. 2016
0 views

IJOER-DEC-2015-36

IJOER-JUN-2016-19
30. 06. 2016
0 views

IJOER-JUN-2016-19

IJOER-JUN-2016-8
30. 06. 2016
0 views

IJOER-JUN-2016-8

IJOER-JUN-2016-7
30. 06. 2016
0 views

IJOER-JUN-2016-7

IJOER-JUN-2016-3
30. 06. 2016
0 views

IJOER-JUN-2016-3

IJOER-JUN-2016-2
30. 06. 2016
0 views

IJOER-JUN-2016-2

IJOER-JUN-2016-34
30. 06. 2016
0 views

IJOER-JUN-2016-34

IJOER-JUN-2016-32
30. 06. 2016
0 views

IJOER-JUN-2016-32

IJOER-JUN-2016-29
30. 06. 2016
0 views

IJOER-JUN-2016-29

IJOER-JUN-2016-28
30. 06. 2016
0 views

IJOER-JUN-2016-28

IJOER-JUN-2016-25
30. 06. 2016
0 views

IJOER-JUN-2016-25

Engineering Journal
30. 06. 2016
0 views

Engineering Journal

IJOER-MAY-2016-50
30. 06. 2016
0 views

IJOER-MAY-2016-50

IJOER-JUN-2016-36
30. 06. 2016
0 views

IJOER-JUN-2016-36

IJOER-JUN-2016-27
30. 06. 2016
0 views

IJOER-JUN-2016-27

IJOER-JUL-2016-16
03. 08. 2016
0 views

IJOER-JUL-2016-16

IJOER-JUL-2016-15
03. 08. 2016
0 views

IJOER-JUL-2016-15

IJOER-JUL-2016-28
03. 08. 2016
0 views

IJOER-JUL-2016-28

IJOER-JUL-2016-26
03. 08. 2016
0 views

IJOER-JUL-2016-26

IJOER-JUL-2016-25
03. 08. 2016
0 views

IJOER-JUL-2016-25

IJOER-JUL-2016-52
04. 08. 2016
0 views

IJOER-JUL-2016-52

IJOER-JUL-2016-37
04. 08. 2016
0 views

IJOER-JUL-2016-37

IJOER-JUL-2016-42
03. 08. 2016
0 views

IJOER-JUL-2016-42

IJOER-JUL-2016-39
03. 08. 2016
0 views

IJOER-JUL-2016-39

IJOER-JUL-2016-31
03. 08. 2016
0 views

IJOER-JUL-2016-31

IJOER-JUL-2016-29
03. 08. 2016
0 views

IJOER-JUL-2016-29

IJOER-JUL-2016-13
03. 08. 2016
0 views

IJOER-JUL-2016-13

IJOER-JUL-2016-57
01. 09. 2016
0 views

IJOER-JUL-2016-57

IJOER-JUL-2016-48
01. 09. 2016
0 views

IJOER-JUL-2016-48

IJOER-JUL-2016-38
01. 09. 2016
0 views

IJOER-JUL-2016-38

IJOER-JUL-2016-3
01. 09. 2016
0 views

IJOER-JUL-2016-3

IJOER-FEB-2016-24
01. 09. 2016
0 views

IJOER-FEB-2016-24

IJOER-AUG-2016-40
01. 09. 2016
0 views

IJOER-AUG-2016-40

IJOER-AUG-2016-38
01. 09. 2016
0 views

IJOER-AUG-2016-38

IJOER-AUG-2016-39
05. 09. 2016
0 views

IJOER-AUG-2016-39

IJOER-AUG-2016-12
05. 09. 2016
0 views

IJOER-AUG-2016-12

IJOER-AUG-2016-8
02. 10. 2016
0 views

IJOER-AUG-2016-8

IJOER-OCT-2016-33
02. 11. 2016
0 views

IJOER-OCT-2016-33

IJOER-OCT-2016-24
02. 11. 2016
0 views

IJOER-OCT-2016-24

IJOER-OCT-2016-18
02. 11. 2016
0 views

IJOER-OCT-2016-18

IJOER-OCT-2016-16
02. 11. 2016
0 views

IJOER-OCT-2016-16

IJOER-OCT-2016-15
02. 11. 2016
0 views

IJOER-OCT-2016-15

IJOER-OCT-2016-13
02. 11. 2016
0 views

IJOER-OCT-2016-13

IJOER-OCT-2016-12
02. 11. 2016
0 views

IJOER-OCT-2016-12

IJOER-OCT-2016-8
02. 11. 2016
0 views

IJOER-OCT-2016-8

IJOER-OCT-2016-7
02. 11. 2016
0 views

IJOER-OCT-2016-7

IJOER-OCT-2016-3
02. 11. 2016
0 views

IJOER-OCT-2016-3

IJOER-NOV-2016-27
03. 12. 2016
0 views

IJOER-NOV-2016-27

IJOER-OCT-2016-41
03. 12. 2016
0 views

IJOER-OCT-2016-41

IJOER-OCT-2016-39
03. 12. 2016
0 views

IJOER-OCT-2016-39

IJOER-NOV-2016-24
03. 12. 2016
0 views

IJOER-NOV-2016-24

IJOER-NOV-2016-16
03. 12. 2016
0 views

IJOER-NOV-2016-16

IJOER-NOV-2016-4
03. 12. 2016
0 views

IJOER-NOV-2016-4

IJOER-DEC-2016-18
06. 01. 2017
0 views

IJOER-DEC-2016-18

IJOER-DEC-2016-15
06. 01. 2017
0 views

IJOER-DEC-2016-15

IJOER-DEC-2016-14
06. 01. 2017
0 views

IJOER-DEC-2016-14

IJOER-DEC-2016-11
06. 01. 2017
0 views

IJOER-DEC-2016-11

IJOER-DEC-2016-10
06. 01. 2017
0 views

IJOER-DEC-2016-10

IJOER-DEC-2016-9
06. 01. 2017
0 views

IJOER-DEC-2016-9

IJOER-DEC-2016-5
06. 01. 2017
0 views

IJOER-DEC-2016-5

IJOER-DEC-2016-3
06. 01. 2017
0 views

IJOER-DEC-2016-3

IJOER-OCT-2016-1
06. 01. 2017
0 views

IJOER-OCT-2016-1

IJOER-NOV-2016-30
06. 01. 2017
0 views

IJOER-NOV-2016-30

IJOER-NOV-2016-29
06. 01. 2017
0 views

IJOER-NOV-2016-29

IJOER-NOV-2016-25
06. 01. 2017
0 views

IJOER-NOV-2016-25

IJOER-DEC-2016-13
06. 02. 2017
0 views

IJOER-DEC-2016-13

IJOER-DEC-2016-8
06. 02. 2017
0 views

IJOER-DEC-2016-8

IJOER-SEP-2016-29
07. 02. 2017
0 views

IJOER-SEP-2016-29

IJOER-JAN-2017-10
07. 02. 2017
0 views

IJOER-JAN-2017-10

IJOER-JAN-2017-9
07. 02. 2017
0 views

IJOER-JAN-2017-9

IJOER-JAN-2017-8
07. 02. 2017
0 views

IJOER-JAN-2017-8

IJOER-JAN-2017-7
07. 02. 2017
0 views

IJOER-JAN-2017-7

IJOER-DEC-2016-20
07. 02. 2017
0 views

IJOER-DEC-2016-20

IJOER-MAR-2017-17
02. 04. 2017
0 views

IJOER-MAR-2017-17

IJOER-MAR-2017-5
02. 04. 2017
0 views

IJOER-MAR-2017-5

IJOER-MAR-2017-4
02. 04. 2017
0 views

IJOER-MAR-2017-4

IJOER-MAR-2017-1
02. 04. 2017
0 views

IJOER-MAR-2017-1

IJOER-MAR-2017-8
02. 04. 2017
0 views

IJOER-MAR-2017-8

IJOER-MAR-2017-6
02. 04. 2017
0 views

IJOER-MAR-2017-6

IJOER-JAN-2017-11
02. 04. 2017
0 views

IJOER-JAN-2017-11

IJOER-FEB-2017-15
02. 04. 2017
0 views

IJOER-FEB-2017-15

IJOER-FEB-2017-8
02. 04. 2017
0 views

IJOER-FEB-2017-8

IJOER-MAR-2017-26
02. 04. 2017
0 views

IJOER-MAR-2017-26

IJOER-MAR-2017-23
02. 04. 2017
0 views

IJOER-MAR-2017-23

IJOER-MAR-2017-13
02. 04. 2017
0 views

IJOER-MAR-2017-13

IJOER-APR-2017-21
05. 05. 2017
0 views

IJOER-APR-2017-21

IJOER-APR-2017-19
05. 05. 2017
0 views

IJOER-APR-2017-19

IJOER-APR-2017-18
05. 05. 2017
0 views

IJOER-APR-2017-18

IJOER-MAY-2017-29
10. 06. 2017
0 views

IJOER-MAY-2017-29

IJOER-MAY-2017-28
10. 06. 2017
0 views

IJOER-MAY-2017-28

IJOER-MAY-2017-31
10. 06. 2017
0 views

IJOER-MAY-2017-31

IJOER-MAY-2017-23
10. 06. 2017
0 views

IJOER-MAY-2017-23

IJOER-MAY-2017-14
10. 06. 2017
0 views

IJOER-MAY-2017-14

IJOER-MAY-2017-12
10. 06. 2017
0 views

IJOER-MAY-2017-12

IJOER-MAY-2017-8
10. 06. 2017
0 views

IJOER-MAY-2017-8

IJOER-MAY-2017-6
10. 06. 2017
0 views

IJOER-MAY-2017-6

IJOER-APR-2017-15
10. 06. 2017
0 views

IJOER-APR-2017-15

IJOER-MAY-2017-25
08. 07. 2017
0 views

IJOER-MAY-2017-25

IJOER-JUN-2017-12
08. 07. 2017
0 views

IJOER-JUN-2017-12

IJOER-JUN-2017-10
08. 07. 2017
0 views

IJOER-JUN-2017-10

IJOER-SEP-2017-17
10. 11. 2017
0 views

IJOER-SEP-2017-17

IJOER-OCT-2017-14
10. 11. 2017
0 views

IJOER-OCT-2017-14

IJOER-OCT-2017-13
10. 11. 2017
0 views

IJOER-OCT-2017-13

IJOER-OCT-2017-11
10. 11. 2017
0 views

IJOER-OCT-2017-11

IJOER-SEP-2017-20
10. 11. 2017
0 views

IJOER-SEP-2017-20

IJOER-OCT-2017-9
10. 11. 2017
0 views

IJOER-OCT-2017-9

IJOER-OCT-2017-8
10. 11. 2017
0 views

IJOER-OCT-2017-8

IJOER-OCT-2017-3
10. 11. 2017
0 views

IJOER-OCT-2017-3

IJOER-NOV-2017-16
09. 12. 2017
0 views

IJOER-NOV-2017-16

IJOER-NOV-2017-15
09. 12. 2017
0 views

IJOER-NOV-2017-15

IJOER-NOV-2017-14
09. 12. 2017
0 views

IJOER-NOV-2017-14

IJOER-NOV-2017-13
09. 12. 2017
0 views

IJOER-NOV-2017-13

IJOER-NOV-2017-12
09. 12. 2017
0 views

IJOER-NOV-2017-12

IJOER-NOV-2017-11
09. 12. 2017
0 views

IJOER-NOV-2017-11

IJOER-NOV-2017-10
09. 12. 2017
0 views

IJOER-NOV-2017-10

IJOER-NOV-2017-9
09. 12. 2017
0 views

IJOER-NOV-2017-9

IJOER-DEC-2017-11
01. 01. 2018
0 views

IJOER-DEC-2017-11

IJOER-DEC-2017-10
01. 01. 2018
0 views

IJOER-DEC-2017-10

IJOER-DEC-2017-7
01. 01. 2018
0 views

IJOER-DEC-2017-7

IJOER-DEC-2017-4
01. 01. 2018
0 views

IJOER-DEC-2017-4

IJOER-DEC-2017-2
01. 01. 2018
0 views

IJOER-DEC-2017-2

IJOER-DEC-2017-9
01. 01. 2018
0 views

IJOER-DEC-2017-9

IJOER-DEC-2017-6
01. 01. 2018
0 views

IJOER-DEC-2017-6

IJOER-DEC-2017-5
01. 01. 2018
0 views

IJOER-DEC-2017-5

IJOER-DEC-2017-1
31. 12. 2017
0 views

IJOER-DEC-2017-1

IJOER-MAR-2018-1
12. 05. 2018
0 views

IJOER-MAR-2018-1

IJOER-MAY-2018-14
31. 05. 2018
0 views

IJOER-MAY-2018-14

IJOER-MAY-2018-12
31. 05. 2018
0 views

IJOER-MAY-2018-12

IJOER-MAY-2018-9
31. 05. 2018
0 views

IJOER-MAY-2018-9