Lesson19

Information about Lesson19

Published on November 13, 2007

Author: lawson

Source: authorstream.com

Content

Celestial Applications:  Celestial Applications Learning Objectives: Know the information that can be obtained from the practice of celestial navigation at sea. Know the correct procedures for computing times of sunrise, sunset, and twilight. Determination of Latitude:  Determination of Latitude As we have already seen, determining position using celestial navigation is a lot of work. Under certain circumstances, it is possible to determine latitude by using methods which are much less time consuming. Determination of Latitude:  Determination of Latitude A latitude line (an LOP) can obtained by observing a body at meridian passage. Two bodies are commonly used for this type of latitude determination: Polaris, since it is always due north (and therefore always at meridian passage) the sun, when it reaches its highest altitude during the day (Local Apparent Noon) Determination of Latitude:  Determination of Latitude By observing a body when it is at meridian passage, the navigation triangle is reduced to a line, greatly simplifying our solution. Determination of Latitude:  Determination of Latitude Latitude by Polaris:  Latitude by Polaris Polaris (the “pole star”) is so named because it lies almost directly above the north pole. Colatitude and coaltitude are one and the same. As a result, when in the northern hemisphere, Polaris may be observed, and the altitude of Polaris is equivalent to the observer’s latitude. Latitude by Polaris:  Latitude by Polaris Latitude by Polaris:  Latitude by Polaris A cutaway, side view of the earth is helpful in showing the relationships involved... Latitude by Polaris:  Latitude by Polaris In reality, of course, Polaris and the celestial Pn are not exactly coincident; Polaris wanders a bit with respect to the north pole. To account for this, a correction table is provided in the Nautical Almanac. Latitude by Local Apparent Noon (LAN):  Latitude by Local Apparent Noon (LAN) Observation of the sun at meridian transit (“high noon”) is a very convenient method for determining latitude. The sun latitude line thus obtained is considered one of the most accurate LOPs available. Latitude by Local Apparent Noon (LAN):  Latitude by Local Apparent Noon (LAN) The sun’s declination changes from N 23.5 o to S 23.5 o in the course of each year. As a result, there are a number of different relationships possible between the elevated celestial pole, position of the sun, and observer’s zenith at LAN. Latitude by LAN:  Latitude by LAN Latitude by Local Apparent Noon (LAN):  Latitude by Local Apparent Noon (LAN) Now we’ll work through an example to illustrate the concept. Keep in mind that, in reality, some corrections must be applied to our calculations to come up with an accurate latitude by LAN. Here we are just addressing the theory behind LAN. Determination of Gyro Error:  Determination of Gyro Error Gyro error by Polaris used in Northern latitudes between the equator and 65 oN. True azimuth of Polaris is extracted from the Nautical Almanac, and compared to the observed azimuth of Polaris. Determination of Gyro Error:  Determination of Gyro Error Sun Amplitude Sight sun is observed at sunset or sunrise. At this time, it is easy to measure the true azimuth of the sun, since it’s right on the horizon. True azimuth can be found without using a sight reduction form, by using either an amplitude table or the amplitude angle formula. Gyro Error by Sun Amplitude:  Gyro Error by Sun Amplitude Gyro Error by Sun Amplitude:  Gyro Error by Sun Amplitude The previous slide showed the sun at the time of equinox; at other times of the year, the sun’s declination will be above or below the equator. Gyro Error by Sun Amplitude:  Gyro Error by Sun Amplitude Obviously, if we’re not at the equator, the geometry is a bit more complicated, but the idea is the same. Determination of Gyro Error:  Determination of Gyro Error Azimuth of the Sun: Similar to the sun amplitude sight, but can be done any time of the day. The true azimuth of the sun is calculated using a sight reduction form, and compared to the measured value of true azimuth. Calculations are more involved since a complete sight reduction is required. Determination of Times of Sunrise and Sunset:  Determination of Times of Sunrise and Sunset Important for the navigator. Determines the time of twilight, both in the morning and evening, when a celestial fix may be obtained. May also be important for other operational reasons. Calculation requires use the Nautical Almanac and the DR plot. Determination of Times of Sunrise and Sunset:  Determination of Times of Sunrise and Sunset Good examples are in your text book. We’ll work through one in class. Terms with which you should be familiar: Civil twilight (sun6o below the horizon). Nautical twilight (sun 12o below the horizon).

Related presentations


Other presentations created by lawson

Problem Solving Ppt
19. 12. 2007
0 views

Problem Solving Ppt

GenerationalPresenta tion
30. 12. 2007
0 views

GenerationalPresenta tion

geotermia
09. 10. 2007
0 views

geotermia

Lao Peoples Democratic Republic
01. 12. 2007
0 views

Lao Peoples Democratic Republic

suomi englanti reseptit
04. 12. 2007
0 views

suomi englanti reseptit

Decisionarium
06. 12. 2007
0 views

Decisionarium

Lean Six Sigma ASQ 0604
07. 11. 2007
0 views

Lean Six Sigma ASQ 0604

Grover
15. 11. 2007
0 views

Grover

bayes
19. 11. 2007
0 views

bayes

TEPAV ETU Jan27 2006
23. 11. 2007
0 views

TEPAV ETU Jan27 2006

Objectives vs Outcomes
13. 12. 2007
0 views

Objectives vs Outcomes

Retzer NATO
27. 12. 2007
0 views

Retzer NATO

Tudor Dance
23. 11. 2007
0 views

Tudor Dance

AFFF
06. 11. 2007
0 views

AFFF

JStroth
27. 09. 2007
0 views

JStroth

EE4 Witte
04. 01. 2008
0 views

EE4 Witte

Rasputin
24. 02. 2008
0 views

Rasputin

WWI
28. 02. 2008
0 views

WWI

GNP NA Presentation Overview
11. 03. 2008
0 views

GNP NA Presentation Overview

MCQs 2004 Workshop
12. 03. 2008
0 views

MCQs 2004 Workshop

IZA
18. 03. 2008
0 views

IZA

kmhtm004 10
27. 03. 2008
0 views

kmhtm004 10

ezasiaelectricpower
30. 03. 2008
0 views

ezasiaelectricpower

HomeDepotPresentation
13. 04. 2008
0 views

HomeDepotPresentation

WMD
04. 01. 2008
0 views

WMD

LookingUp
03. 01. 2008
0 views

LookingUp

Helicobacter pylori Musumeci
04. 01. 2008
0 views

Helicobacter pylori Musumeci

jb grant committees 2007
18. 12. 2007
0 views

jb grant committees 2007

H Ejiri
17. 12. 2007
0 views

H Ejiri

NewYorkSuperintenden tsOct2007
05. 11. 2007
0 views

NewYorkSuperintenden tsOct2007

MA OBM 1205
05. 11. 2007
0 views

MA OBM 1205

Call the Fed DiscountRate
31. 12. 2007
0 views

Call the Fed DiscountRate

1 colinwooff
26. 11. 2007
0 views

1 colinwooff

4TC Day One Summary
07. 01. 2008
0 views

4TC Day One Summary

KOS NBII Zolly
05. 12. 2007
0 views

KOS NBII Zolly

hill 03032005
05. 01. 2008
0 views

hill 03032005

Giraud2005VC3
29. 12. 2007
0 views

Giraud2005VC3

agg02
02. 11. 2007
0 views

agg02

ez1
01. 10. 2007
0 views

ez1

KOR 4
05. 11. 2007
0 views

KOR 4

OutbreakVIII
21. 11. 2007
0 views

OutbreakVIII

RMPANNMEET02 kt
29. 10. 2007
0 views

RMPANNMEET02 kt

catskill
12. 12. 2007
0 views

catskill