maws3 5883

Information about maws3 5883

Published on October 23, 2007

Author: Janelle

Source: authorstream.com

Content

Bridging scales: Ab initio atomistic thermodynamics :  Bridging scales: Ab initio atomistic thermodynamics Karsten Reuter Fritz-Haber-Institut, Berlin Slide2:  General idea Approach: separate system into sub-systems (exploit idea of reservoirs!) calculate properties of sub-systems separately (cheaper…) connect by implying equilibrium between sub-systems Drawback: - no temporal information („system properties after infinite time“) - equilibrium assumption Motivation: extend length scale consider finite temperature effects Ab initio atomistic thermodynamics and statistical mechanics of surface properties and functions K. Reuter, C. Stampfl and M. Scheffler, in: Handbook of Materials Modeling Vol. 1, (Ed.) S. Yip, Springer (Berlin, 2005). http://www.fhi-berlin.mpg.de/th/paper.html Slide3:  Connecting thermodynamics, statistical mechanics and density-functional theory Statistical Mechanics, D.A. McQuarrie, Harper Collins Publ. (1976) Introduction to Modern Statistical Mechanics, D. Chandler, Oxford Univ. Press (1987) M. Scheffler in Physics of Solid Surfaces 1987, J. Koukal (Ed.), Elsevier (1988) Thermodynamics in a nutshell:  In its set of variables the total derivative of each potential function is simple (derive from 1st law of ThD: dEtot = dQ + dW, dW = -pdV, dQ = TdS) dE = TdS – pdV dH = TdS + Vdp dF = -SdT – pdV dG = -SdT + Vdp Thermodynamics in a nutshell Internal energy (U) Etot(S,V) Enthalpy H(S,p) = Etot + pV (Helmholtz) free energy F(T,V) = Etot - TS Gibbs free energy G(T,p) = Etot - TS + pV Equilibrium state of system minimizes corresponding potential function Potential functions These expressions open the gate to a whole set of general relations like: S = - (F/T)V , p = - (F/V)T Etot = - T 2 (/T)V (F/T) Gibbs-Helmholtz eq. (T/V)S = - (p/S)V etc. Maxwell relations - Chemical potential µ = (G/ n)T,p is the cost to remove a particle from the system. Homogeneous system: µ = G/N (= g) i.e. Gibbs free energy per particle Link to statistical mechanics:  If groups of degrees of freedom are decoupled from each other (i.e. if the energetic states of one group do not depend on the state within the other group), then Ztotal = ( i exp(-EiA / kBT) ) ( i exp(-EiB / kBT) ) = ZA ZB  Ftotal = FA + FB e.g. electronic  nuclear (Born-Oppenheimer) rotational  vibrational Link to statistical mechanics A many-particle system will flow through its huge phase space, fluctuating through all microscopic states consistent with the constraints imposed on the system. For an isolated system with fixed energy E and fixed size V,N (microcanonic ensemble) these microscopic states are all equally likely at thermodynamic equilibrium (i.e. equilibrium is the most random situation). Partition function Z = Z(T,V) = i exp(-Ei / kBT)  Boltzmann-weighted sum over all possible system states  F = - kBT ln( Z ) N indistinguishable, independent particles: Ztotal = 1/N! (Zone particle)N Computation of free energies: ideal gas I:  Computation of free energies: ideal gas I  µ(T,p) = G / N = (F + pV) / N = ( - kBT ln( Z ) + pV ) / N Z = 1/N! ( Znucl Zel Ztrans Zrot Zvib )N X i) Electr. free energy Zel = i exp(-Eiel / kBT) Typical excitation energies eV >> kBT, only (possibly degenerate) ground state  Fel  Etot – kBT ln( Ispin ) contributes significantly Required input: Internal energy Etot Ground state spin degeneracy Ispin ii) Transl. free energy Ztrans = k exp(-ħk2 / 2mkBT) Particle in a box of length L = V1/3 (L)  Ztrans  V ( 2 mkBT / ħ2 )3/2 Required input: Particle mass m Computation of free energies: ideal gas II:  Computation of free energies: ideal gas II iii) Rotational free energy Zrot = J (2J+1)exp(-J(J+1)Bo / kBT) Rigid rotator (Diatomic molecule)  Zrot  - kBT ln(kBT/ Bo )  = 2 (homonucl.), = 1 (heteronucl.) Bo ~ md2 (d = bond length) Required input: Rotational constant Bo (exp: tabulated microwave data) Computation of free energies: ideal gas III:  Computation of free energies: ideal gas III O2 CO m (amu) 32 28 stretch (meV) 196 269 Bo (meV) 0.18 0.24  2 1 Ispin 3 1    µ = µ(T,p) = Etot + Δμ(T,p) Alternatively: Δ(T, p) = Δ(T, po) + kT ln(p/po) and Δ(T, po = 1 atm) tabulated in thermochem. tables (e.g. JANAF) Computation of free energies: solids:  Computation of free energies: solids Ftrans Translational free energy Frot Rotational free energy pV V = V(T,p) from equation of state, varies little Fconf Configurational free energy Etot Internal energy Fvib Vibrational free energy G(T,p) = Etot + Ftrans + Frot + Fvib + Fconf + pV Etot, Fvib use differences use simple models to approx. Fvib (Debye, Einstein)  Solids (low T): G(T,p) ~ Etot + Fconf Slide10:  II. Starting simple: Equilibrium concentration of point defects Solid State Physics, N.W. Ashcroft and N.D. Mermin, Holt-Saunders (1976) Isolated point defects and bulk dissolution:  Isolated point defects and bulk dissolution On entropic grounds there will always be a finite concentration of defects at finite temperature, even though the creation of a defect costs energy (ED > 0). How large is it? Internal energy: Etot = n ED N sites, n defects (n <<N) Minimize free energy: (G/n)T,p = /nT,p (Etot – Fconf + pV) = 0 Slide12:  III. Slightly more involved: Effect of a surrounding gas phase on the surface structure and composition E. Kaxiras et al., Phys. Rev. B 35, 9625 (1987) X.-G. Wang et al., Phys. Rev. Lett. 81, 1038 (1998) K. Reuter and M. Scheffler, Phys. Rev. B 65, 035406 (2002) Surface thermodynamics:  Surface thermodynamics A surface can never be alone: there are always “two sides” to it !!! solid – gas solid – liquid solid – solid (“interface”) … Phase I Phase II Phase I / phase II alone (bulk): GI = NI I GII = NII II Total system (with surface): GI+II = GI + GII + Gsurf (T,p) A  = 1/A ( GI+II - i Ni i ) Surface tension (free energy per area) Example: Surface in contact with oxygen gas phase:  Example: Surface in contact with oxygen gas phase O2 gas surface bulk  surf. = 1/A [ Gsurf.(NO, NM) – NO O - NM M ] Slide15:  Oxide formation on Pd(100) M. Todorova et al., Surf. Sci. 541, 101 (2003); K. Reuter and M. Scheffler, Appl. Phys. A 78, 793 (2004) p(2x2) O/Pd(100) (√5 x √5)R27° PdO(101)/Pd(100) Vibrational contributions to the surface free energy:  Vibrational contributions to the surface free energy Fvib(T,V) =  d Fvib(T,)  () Use simple models for order of magnitude estimate e.g. Einstein model:  ( ) =  ( - ) Surface induced variations of substrate modes:  Surface induced variations of substrate modes < 10 meV/Å2 for T < 600 K - in this case!!! Surface functional groups:  Surface functional groups Q. Sun, K. Reuter and M. Scheffler, Phys. Rev. B 67, 205424 (2003) Configurational entropy and phase transitions:  clean surface O(1x1) Configurational entropy and phase transitions Slide20:  IV. Exploration of configuration space: Monte Carlo simulations and lattice gas Hamiltonians Understanding Molecular Simulation, D. Frenkel and B. Smit, Academic Press (2002) A Guide to Monte Carlo Simulations in Statistical Physics, D.P. Landau and K. Binder, Cambridge Univ. Press (2000) Configuration space and configurational free energy:  In general, the configuration space is spanned by all possible (continuous) positions rN of the N atoms in the sample: Z = ∫ drN exp(- E(r1,r2,…,rN) / kBT) The average value of any observable A at temperature T in this ensemble is then <A> = 1/Z ∫ drN A(r1,r2,…,rN) exp( -E(r1,r2,…,rN) / kBT) Configuration space and configurational free energy Canonic ensemble (constant temperature): Partition function Z = Z(T,V) = i exp(-Ei / kBT)  Boltzmann-weighted sum over all possible system states Fconf = - kBT ln( Zconf ) Slide22:  Evaluating high-dimensional integrals: Monte Carlo techniques Problem: - numerical quadrature (on a grid) rapidly unfeasible scales with: (no. of grid points)N e.g.: 10 atoms in 3D, 5 grid points: 530 ~ 1021 evaluations <A> = 1/Z ∫ drN A(r1,r2,…,rN) exp( -E(r1,r2,…,rN) / kBT) Slide23:  Finding a needle in a haystack: Importance sampling <A> = 1/Z ∫ drN A(r1,r2,…,rN) exp( -E(r1,r2,…,rN) / kBT) Slide24:  Specifying “getting out of the water”: The Metropolis algorithm Etrial < Epresent: accept Etrial > Epresent: accept with probability exp[- (Etrial-Epresent) / kBT ] Some remarks: - With this definition, Metropolis fulfills „detailed balance“ and thus samples a canonic ensemble - If temperature T is steadily decreased during simulation, upward moves become less likely and one ends up with an efficient ground state search („simulated annealing“) In short::  In short: Modern importance sampling Monte Carlo techniques allow to - efficiently evaluate the high-dimensional integrals needed for evaluation of canonic averages - properly explore the configuration space, and thus configurational entropy is intrinsically accounted for in MC simulations Major limitations: - still need easily 105 – 106 total energy evaluations - this is presently an unsolved issue. First steps in the direction of true „ab initio Monte Carlo“ are only achieved using lattice models Slide26:  A very simple lattice system: O / Ru(0001) Consider only adsorption into hcp sites (for simplicity) Simple hexagonal lattice, one adsorption site per unit cell Questions: which ordered phases exist ? order-disorder transition at which temperature ? Configuration space comprises: disordered structures ordered structures (arbitrary periodicity) BUT: only periodic structures accessible to direct DFT, and supercell size quite limited How can we then sample the configuration space? Slide27:  Lattice gas Hamiltonians / Cluster expansions Expand total energy of arbitrary configuration in terms of lateral interactions Elatt = åi Eo + 1/2 åi,j Vpair(dij) si sj + 1/3 åi,j,k Vtrio(dij,djk,dki) si sj sk + … Algebraic sum (very fast to evaluate) Ising, Heisenberg models Conceptually easily generalized to multiple adsorbate species more complex lattices (different site types etc.) …but how can we get the lateral interactions from DFT? Slide28:  LGH parametrization through DFT Since isolated clusters not compatible with supercell approach, exploit instead the interaction with supercell images in a systematic way: Compute many ordered structures Write total energy as LGH expansion, e.g. E(3x3) = 2Eo + 2V1pair + 2V3pair Set up system of linear equations „Invert“ to get lateral interactions 3 3 Slide29:  O (eV)  (meV/Å2) In short::  In short: DFT parametrized lattice gas Hamiltonians enable - efficient sampling of configurational space - parameter-free prediction of phase diagrams - first treatment of disordered structures Major limitations: - systematics / convergence of LGH expansion - restricted to systems that can be mapped onto a lattice - expansion rapidly very cumbersome for complex lattices, multiple adsorbates, at defects/steps/etc. Slide31:   allows any general thermodynamic reasoning concentration of point defects at finite T surface structure and composition in realistic environments Ab initio atomistic thermodynamics  major limitations Vxc vs. kBT sampling of configurational space „only“ equilibrium Lecture 2 tomorrow: kinetics, time scales Use DFT in the computation of free energies Suitably exploit equilibria and concept of reservoirs

Related presentations


Other presentations created by Janelle

web2001 5 potato fungicide
31. 12. 2007
0 views

web2001 5 potato fungicide

Acupuncture
04. 01. 2008
0 views

Acupuncture

Networking Devices
01. 01. 2008
0 views

Networking Devices

Som de Cinema
24. 10. 2007
0 views

Som de Cinema

Cataract  History  05
02. 05. 2008
0 views

Cataract History 05

GEC NEVC 0ct 06
28. 09. 2007
0 views

GEC NEVC 0ct 06

LECTURE 7
03. 10. 2007
0 views

LECTURE 7

TS2 2 1
04. 10. 2007
0 views

TS2 2 1

saferoom
07. 10. 2007
0 views

saferoom

cpt
16. 10. 2007
0 views

cpt

Presentation media use
17. 10. 2007
0 views

Presentation media use

MosbysNursingCONSULT Training
29. 09. 2007
0 views

MosbysNursingCONSULT Training

Presentacion PPP Panama
22. 10. 2007
0 views

Presentacion PPP Panama

sankar jag
29. 10. 2007
0 views

sankar jag

G020213 00
29. 10. 2007
0 views

G020213 00

jan20wrf
03. 10. 2007
0 views

jan20wrf

Contexto Latinoamericano 2005
22. 10. 2007
0 views

Contexto Latinoamericano 2005

BLRB08 2 rbs
11. 12. 2007
0 views

BLRB08 2 rbs

CrystalPP
12. 10. 2007
0 views

CrystalPP

07 Pilz
19. 10. 2007
0 views

07 Pilz

Lec3 APS301 Slideshow
25. 10. 2007
0 views

Lec3 APS301 Slideshow

Hill Ch 003 part 3 03
31. 10. 2007
0 views

Hill Ch 003 part 3 03

Foolish Fragments
01. 11. 2007
0 views

Foolish Fragments

pp hematoma
06. 11. 2007
0 views

pp hematoma

file0068
06. 11. 2007
0 views

file0068

Biodiesel Production
07. 11. 2007
0 views

Biodiesel Production

turkey presentation
21. 11. 2007
0 views

turkey presentation

Turkey and the EU
23. 11. 2007
0 views

Turkey and the EU

chap14 07
14. 12. 2007
0 views

chap14 07

The Clash of Civilizations
23. 12. 2007
0 views

The Clash of Civilizations

grace agnew
20. 11. 2007
0 views

grace agnew

IX Aerosol
03. 01. 2008
0 views

IX Aerosol

Malignant Wounds
05. 01. 2008
0 views

Malignant Wounds

224 121676
07. 01. 2008
0 views

224 121676

Monday lab ppt presentation
10. 10. 2007
0 views

Monday lab ppt presentation

Sailor Relationship Management
08. 10. 2007
0 views

Sailor Relationship Management

Schischke Penang Label v2
01. 10. 2007
0 views

Schischke Penang Label v2

tomography
15. 10. 2007
0 views

tomography

Flowering2
17. 12. 2007
0 views

Flowering2

INMET training course v4
28. 12. 2007
0 views

INMET training course v4

landmarks And Monuments
12. 10. 2007
0 views

landmarks And Monuments

EARSS december 1 06
19. 10. 2007
0 views

EARSS december 1 06

Presen 1
10. 10. 2007
0 views

Presen 1

P6S1
16. 02. 2008
0 views

P6S1

mtgbog07 smith
19. 02. 2008
0 views

mtgbog07 smith

Viktoras Seskauskas
28. 11. 2007
0 views

Viktoras Seskauskas

Canadian literature powerpoint4
12. 03. 2008
0 views

Canadian literature powerpoint4

ses3 1545 Sethu Raman
30. 09. 2007
0 views

ses3 1545 Sethu Raman

A105 024 Cosmo
16. 10. 2007
0 views

A105 024 Cosmo

communication 2
27. 11. 2007
0 views

communication 2

Performance of DFT
31. 10. 2007
0 views

Performance of DFT

investment strategy
09. 04. 2008
0 views

investment strategy

Analyst meet
17. 04. 2008
0 views

Analyst meet

Sess 1 Zhang Xizhen
10. 10. 2007
0 views

Sess 1 Zhang Xizhen

2205 Joao Carlos
26. 11. 2007
0 views

2205 Joao Carlos

Single Payer101
07. 05. 2008
0 views

Single Payer101

dentalhealth
08. 05. 2008
0 views

dentalhealth

AACBelecs2004
08. 05. 2008
0 views

AACBelecs2004

Extending the SpanishWordNet
31. 10. 2007
0 views

Extending the SpanishWordNet

SCOPE991001
02. 05. 2008
0 views

SCOPE991001

SupportGroup031106
02. 05. 2008
0 views

SupportGroup031106

Martina OConnor
02. 05. 2008
0 views

Martina OConnor

dns pres michaelson roots
30. 10. 2007
0 views

dns pres michaelson roots

m101
09. 10. 2007
0 views

m101

CaseEUvirtuellefabrik
15. 10. 2007
0 views

CaseEUvirtuellefabrik

hou leong
10. 10. 2007
0 views

hou leong

DeSangroValencia
31. 10. 2007
0 views

DeSangroValencia

Intro to Pod biomech
30. 04. 2008
0 views

Intro to Pod biomech

wspa07 23
26. 03. 2008
0 views

wspa07 23

95 Romi 25mag
19. 10. 2007
0 views

95 Romi 25mag

Tue1530 137
09. 10. 2007
0 views

Tue1530 137

Helping students help themselves
30. 10. 2007
0 views

Helping students help themselves

XPath
18. 10. 2007
0 views

XPath

GSB presentation4
29. 12. 2007
0 views

GSB presentation4

tornado sample slides
02. 10. 2007
0 views

tornado sample slides

vbq
09. 10. 2007
0 views

vbq

sullivan list
08. 10. 2008
0 views

sullivan list

Moore Plasma Circulation ESSE06
02. 11. 2007
0 views

Moore Plasma Circulation ESSE06

biod145 lecture4 bb
16. 10. 2007
0 views

biod145 lecture4 bb

Final Spring 2003 Presentation
06. 03. 2008
0 views

Final Spring 2003 Presentation

Provisu SSIM2006
19. 10. 2007
0 views

Provisu SSIM2006

WDHSJuly505
20. 02. 2008
0 views

WDHSJuly505

30th Anniv USSP
17. 10. 2007
0 views

30th Anniv USSP

Prion2005
15. 10. 2007
0 views

Prion2005

imperialism 2
22. 10. 2007
0 views

imperialism 2

Lipchitz AFDonCatRisk
23. 10. 2007
0 views

Lipchitz AFDonCatRisk

Cumberland
26. 11. 2007
0 views

Cumberland

606
16. 11. 2007
0 views

606

GAIC5Oct04
31. 10. 2007
0 views

GAIC5Oct04

eceatcz
20. 03. 2008
0 views

eceatcz

upa nyc jonathan bloom
04. 10. 2007
0 views

upa nyc jonathan bloom

ssuo robo3
15. 11. 2007
0 views

ssuo robo3

nuccio lanza
15. 11. 2007
0 views

nuccio lanza

Haroldo Sustainab Develop 0607
30. 10. 2007
0 views

Haroldo Sustainab Develop 0607

presentation eichhorn jan
16. 11. 2007
0 views

presentation eichhorn jan

ling411 23
19. 11. 2007
0 views

ling411 23

DYB US PRC
16. 10. 2007
0 views

DYB US PRC

PHN0202a
13. 03. 2008
0 views

PHN0202a

10 2205 HISTORIA EUA
13. 11. 2007
0 views

10 2205 HISTORIA EUA

ChineseAmericans
30. 10. 2007
0 views

ChineseAmericans

apgrid ggf4
09. 10. 2007
0 views

apgrid ggf4

kur
26. 10. 2007
0 views

kur

HIS104 Lecture05
31. 10. 2007
0 views

HIS104 Lecture05

Harvard Presentation
12. 10. 2007
0 views

Harvard Presentation

wilhelmson
02. 10. 2007
0 views

wilhelmson

MLI Site Visit 4 98 overview
29. 09. 2007
0 views

MLI Site Visit 4 98 overview