MM5 yhe

Information about MM5 yhe

Published on January 4, 2008

Author: Esteban

Source: authorstream.com

Content

Coupling MM5 with ISOLSM: Development, Testing, and Application:  Coupling MM5 with ISOLSM: Development, Testing, and Application W.J. Riley, H.S. Cooley, Y. He*, M.S. Torn Lawrence Berkeley National Laboratory Outline:  Outline Introduction Model Integration Model Configuration Model Testing Simulation and Impacts of Winter Wheat Harvest Conclusions Observations and Future Work Introduction:  Introduction CO2 fluxes and other trace-gas exchanges are tightly coupled to the surface water and energy fluxes. Land-use change has strong impact on surface energy fluxes. We coupled MM5 with ISOLSM (Riley et. al 2003), which is based on LSM1 (Bonan, 1995). LSM1, thus ISOLSM, simulates: vegetation response to water vapor, CO2, and radiation; soil moisture and temperature. ISOLSM also simulates gases and aqueous fluxes within the soil column and 18O composition of water and CO2 exchanges between atmosphere and vegetation. Model Integration:  Model Integration New interface between MM5 and ISOLSM based on the current OSULSM interface with MM5 and includes: partitioning shortwave radiation between diffuse and direct components spatially and temporally-dependent vegetation dynamics (i.e., leaf area index). Compiler options changed to accommodate two different source code styles. Automatic script to retrieve and process pregrid data from NCEP NNRP data. Model Integration (cont’d):  Model Integration (cont’d) Import MM5 to NERSC IBM SP machine. 380 compute nodes, 16 way each  6,656 processors 16 to 64 GB memory per node 375 MHz per CPU  10 Tflop/sec peak speed 44 TB disk space in GPFS Revise MPP library and MPP object files for ISOLSM. Investigate optimization levels to achieve bit-for-bit MPP results with sequential runs. Run scripts with automatic I/O from NERSC HPSS. Speedup with 64 CPUs is about 36. Simulation time: 15 min for domain 1 50 min for domain 2 Model Configuration:  Model Configuration Model Initialization: First-guess and boundary condition interpolated from NCEP NNRP. Model Grids: Outer Domain 1: Continental USA grid size: 54 x 68, resolution: 100 km x 100 km One-way nestdown Inner Domain 2: FIFE or ARM-CART region grid size: 41 x 41, resolution: 10 km x 10 km Vertical: 18 -layers between 100 mb and surface Physics package used: Grell convective scheme Simple ice microphysics MRF PBL scheme CCM2 radiation package Model Testing:  Model Testing Comparisons between: MM5 coupled with ISOLSM MM5 coupled with OSULSM (Chen and Dudhia, 2001) FIFE dataset: 3-year measured data (Betts and Ball 1998) surface fluxes, soil moisture, soil temperature, etc. spatially averaged over 225 km2 area of Kansas. June, July, August of 1987-1989. ISOLSM performed comparably or better than OSULSM. Winter Wheat Harvest Simulation:  Winter Wheat Harvest Simulation MM5-ISOLSM model applied to ARM-CART region from June to July 1987. Two scenarios: Early harvest: June 4, 1987 (Julian day 155) Late harvest: July 5, 1987 (Julian day 186) Set harvest area with bare soil. Four distinct time periods are evident in the simulations: JD 155-158: large evaporation at harvest area JD 158-170: reduced evaporation at harvest area JD 170-186: increased precipitation JD 186-210: two scenarios converge Slide11:  ARM-CART Region early harvest – late harvest Slide12:  ARM-CART Region early harvest - late harvest Slide13:  early harvest – late harvest Conclusions:  Conclusions Successfully coupled MM5 and ISOLSM. Built and ran the coupled model in parallel. Validated the coupled model against current MM5 model and FIFE dataset. Utilized the coupled model to study the impact of winter wheat harvest. Winter wheat harvest simulation indicates that harvest impacts both regional and local surface fluxes, 2 m air temperature, and soil temperature and moisture. Observations and Future Work:  Observations and Future Work The coupled model allows us to estimate surface fluxes that are consistent with ecosystem CO2 exchange. The soil advection and diffusion sub-models allow us to simulate the impacts of regional meteorology on other distributed trace-gases. Study the impact of human-induced land-use change on regional climate and predict regionally-distributed estimates of CO2 exchanges. Investigate the practicality of estimating distributed trace-gas fluxes from atmospheric measurements.

Related presentations


Other presentations created by Esteban

Chapter 15 Knee Conditions
28. 11. 2007
0 views

Chapter 15 Knee Conditions

S WATER
09. 10. 2007
0 views

S WATER

ELearning Conf collins
12. 12. 2007
0 views

ELearning Conf collins

Istvan Bilik
29. 10. 2007
0 views

Istvan Bilik

The Rise of Mussolini in Italy
01. 11. 2007
0 views

The Rise of Mussolini in Italy

intro cicero
01. 11. 2007
0 views

intro cicero

titanic
05. 11. 2007
0 views

titanic

00 18 pp7
05. 11. 2007
0 views

00 18 pp7

defence ficci
05. 11. 2007
0 views

defence ficci

bisnovatiykogan
13. 11. 2007
0 views

bisnovatiykogan

firm
22. 11. 2007
0 views

firm

UDSL Pres 4
26. 11. 2007
0 views

UDSL Pres 4

Insomnia
29. 11. 2007
0 views

Insomnia

ag environment
28. 12. 2007
0 views

ag environment

SAS781 016ArticleSlideShow
01. 01. 2008
0 views

SAS781 016ArticleSlideShow

Friendship Quotes
02. 01. 2008
0 views

Friendship Quotes

Lesson 16 Leader of Russia
26. 10. 2007
0 views

Lesson 16 Leader of Russia

Electronics 1 20 06
07. 11. 2007
0 views

Electronics 1 20 06

BATALIN FEB 13 04
07. 01. 2008
0 views

BATALIN FEB 13 04

Slides4c
07. 01. 2008
0 views

Slides4c

NRES322 14
08. 01. 2008
0 views

NRES322 14

Weese MRSA
19. 11. 2007
0 views

Weese MRSA

Shore Stephen
13. 12. 2007
0 views

Shore Stephen

Gerberding 07 AAIDD
24. 10. 2007
0 views

Gerberding 07 AAIDD

halloween history
05. 11. 2007
0 views

halloween history

june25 natural dhananjay
20. 02. 2008
0 views

june25 natural dhananjay

BEST03
24. 02. 2008
0 views

BEST03

ch9
27. 02. 2008
0 views

ch9

TrainingPanel
29. 02. 2008
0 views

TrainingPanel

080407
14. 03. 2008
0 views

080407

cares
27. 03. 2008
0 views

cares

UNIDO1
30. 03. 2008
0 views

UNIDO1

Praes WR Glaser DGfPs
16. 11. 2007
0 views

Praes WR Glaser DGfPs

Tireoidites CM 2006
28. 12. 2007
0 views

Tireoidites CM 2006

sommaruga
25. 10. 2007
0 views

sommaruga

Card Sort Indian Artifacts
19. 11. 2007
0 views

Card Sort Indian Artifacts

Exodus08
24. 10. 2007
0 views

Exodus08

Arthur Sadoff
28. 09. 2007
0 views

Arthur Sadoff

research industry partnerships
16. 11. 2007
0 views

research industry partnerships

Molvir Flavi Toga 01 19 06
24. 10. 2007
0 views

Molvir Flavi Toga 01 19 06

Chris Aalberts
25. 12. 2007
0 views

Chris Aalberts

mission mech garden intro
11. 12. 2007
0 views

mission mech garden intro

library agent
30. 10. 2007
0 views

library agent

FallOffDutySafety
06. 11. 2007
0 views

FallOffDutySafety

cours sts intro gen 2005
12. 11. 2007
0 views

cours sts intro gen 2005

JanConrad mar10 06
14. 11. 2007
0 views

JanConrad mar10 06

re nsdi06 slides
18. 12. 2007
0 views

re nsdi06 slides

AMC Italy Intro CMonticelli
31. 10. 2007
0 views

AMC Italy Intro CMonticelli

CROSSMARC Rome Intro
31. 10. 2007
0 views

CROSSMARC Rome Intro

Liz presentation
28. 12. 2007
0 views

Liz presentation

anheuser1
05. 11. 2007
0 views

anheuser1

AUST Overview for Website
06. 11. 2007
0 views

AUST Overview for Website

2b lanciotti
24. 10. 2007
0 views

2b lanciotti

OWK2006 Dixon SBDC
29. 10. 2007
0 views

OWK2006 Dixon SBDC

L23 ch14
03. 10. 2007
0 views

L23 ch14

JAA etno maj 2005
01. 12. 2007
0 views

JAA etno maj 2005

Japansk encefalitt
24. 10. 2007
0 views

Japansk encefalitt