Nature ppt

Information about Nature ppt

Published on September 3, 2007

Author: Eagle

Source: authorstream.com

Content

Nanoscience in Nature:  Nanoscience in Nature Or 'Why Don’t Water Striders Get Wet?' and Other Burning Questions By Jeannie Nye Lake Mills Middle School Lake Mills, WI So, Why Don’t Water Striders Get Wet?:  So, Why Don’t Water Striders Get Wet? Water striders are able to 'walk on water' for a number of reasons. Striders are assisted by five things: http://whyfiles.org/shorties/walk_on_water.html surface area gravitational forces surface forces (van der Waals force) a waxy (hydrophobic) surface on their legs And most important - The microhairs on their feet are ‘nano-groovy’ ! Microhairs Nanogrooves on microhairs Tell me more! (Click here.) Tell me more! Slide3:  Sure they are! If, by chance, the water strider did break the water tension and take a plunge, it would not be able to dry off with a bug-sized towel. At this size, surface adhesion forces (van der Waals force) would keep the towel stuck to the water strider. Besides, the water strider could put on a bathing suit for it's dip; and it would never have to worry about the suit coming off when it hit the water during a high dive. First, because its so small, the water strider would float gently down because the frictional forces acting upon the water strider’s surface overcome the weak influence of gravity at this size. Also adhesion forces would keep the suit on the strider for life. It would also be impossible for the bug to read a book by the pool, since once the pages were scaled down to bug-size, surface adhesion would keep the pages stuck together. http://invsee.asu.edu/nmodules/sizescalemod/unit4.htm Surface Forces and Gravity are Important to the Water Strider. More information can be found on the web at http://www.exploratorium.edu/ronh/bubbles/bubbles.htm . Activities can be found at http://www.lessonplanspage.com/ScienceExAddPenniesToFullGlassMO68.htm or http://www.iit.edu/~smile/ph9205.html Nano-groovy Hair:  Nano-groovy Hair Sticky Spider Toes :  Sticky Spider Toes These are the single hairs (setae) that make up the tuft of hair on the bottom of a jumping spider’s foot. The oval represents the approximate size of the foot magnified to 270x. This picture, magnified 8750x, shows the very dense nanosized setules on the underside of just one of those many seta (hairs) shown in the picture above. http://www.primidi.com/2004/04/26.html Tell me more! Water strider toes help keep it dry, but this spider’s toes help make him sticky! Spider Toes:  Spider Toes Check out this jumping spider’s foot. Jumping spiders use nanoscale structures, too! Below thicker hairs on this spider’s leg are the nanoscale fibers that look like toes. These fibers are on the bottom of the spider's leg, and each individual hair is covered in more hairs. These smaller hairs are called setules. Because these setules are so small they can use van derWaals force to make the spider stick to surfaces. The van der Waals force acts between individual molecules that are within a nanometer of each other (about ten thousand times smaller than the width of a human hair.) What makes the van der Waals force an interesting form of adhesion is that, unlike many glues, the surrounding environment does not affect it. The only thing that affects it is the distance between the objects (in this case, setules and the surface). These nanofibers are small enough that the van de Waals force create a very high degree of waterproof, grease-proof, dirt-proof stickiness. When all 600,000 tips are in contact with a surface the spider can produce an adhesive force of 170 times its own weight. That's like Spiderman clinging to the flat surface of a window on a building by his fingertips and toes only, while rescuing 170 adults who are hanging onto his back! The total van der Waals force on the spider's feet is very strong, but since it is due to many very small forces on each molecule the spider can lift its leg so that the nanosized setules are lifted successively, not all at once. It doesn’t need to be strong to do that. http://www.sciencedaily.com/releases/2004/04/040426054407.htm http://www.primidi.com/2004/04/26.html Spider leg Hairy toe Setules on one hair Lots of nano-toes! :  Lots of nano-toes! Beetles and flies also have nanostructures that help them stick to walls, ceilings and what appear to be smooth surfaces. Tell me more! http://shasta.mpi-stuttgart.mpg.de/biomaterials.html http://shasta.mpi-stuttgart.mpg.de/research/Bio-tribology.htm Tribology:  Tribology is the study of friction, lubrication and wear. When applied to living organisms this study is called bio-tribology. Tribology Why do you think these nanostructures on my toes are important in biotribology? How sticky? As sticky as a …:  How sticky? As sticky as a … http://pubs.acs.org/cen/critter/gecko.html If their feet are that sticky, how do they pick up their feet? http://www.cbid.gatech.edu/resources.htm Gecko? How Can a Gecko Lift Its Foot Off of a Surface? :  How Can a Gecko Lift Its Foot Off of a Surface? These lizards uncurl their toes like a paper party favor whistle when putting their feet down and peel the toes back up as if removing a piece of tape when they step away. http://pubs.acs.org/cen/critter/gecko1.html How strong? As Strong as… Silk?:  How strong? As Strong as… Silk? The nanometer-sized biodegradable threads of spider silk are stronger, by weight, than high-tensile steel. It is also elastic enough to stretch up to 10 times its initial length. Toucan Beaks - Strong and Light :  Toucan Beaks - Strong and Light The exterior of the toucan beak is made up of overlapping nanosized tiles of keratin, the same protein that makes up hair, fingernails, and horn. http://pubs.acs.org/cen/news/83/i50/8350toucan.html http://www.nuthatch.birdnature.com/jan1897/toucan.html The interior of the beak is a rigid foam made of a network of nanosized bony fibers connected by membranes. This allows the beak to absorb high-energy impacts. Keratin tiles glued together Foam-like interior made of bony fiber and drum-like membranes http://search.eurekalert.org/e3/query.html?qt=toucanandamp;col=ev3relandamp;qc=ev3rel Nature uses Light on the Nanoscale :  Nature uses Light on the Nanoscale What Makes Color?:  What Makes Color? http://acept.la.asu.edu/PiN/rdg/interfere/interfere.shtml There are three possible reasons for color: One reason is pigment. If color is due to pigment, the color never changes. For example, a bluejay is always blue. Though pigment isn’t based on nanoscience, the next two examples of ways to create color are based on nanoscience. Or Could Color Be Nanoscopic? :  Or Could Color Be Nanoscopic? 2. The colors of beetle and butterfly wings come from the scattering of light. Light hits the nanostructures on their scales. These nanostructures are typically smaller than the wavelengths of visible light (smaller than 400 nanometers, for example). Tell me more! (weblink) http://pubs.acs.org/cen/critter/butterfly.html These nanostructures don’t just make me pretty. They also keep me clean by shedding water and dirt! Color Can Be Iridescent, Too!:  Color Can Be Iridescent, Too! Thin films are made of nanoparticles, smaller than 400 nanometers, that produce iridescent (rainbow-like) colors when light strikes them. Iridescent colors change when you look at the object from different angles. Tell me more! (weblink) 3.The third reason for color is the interference of different wavelengths of light (like oil on water). http://acept.la.asu.edu/PiN/rdg/interfere/interfere.shtml http://www.ptfe.gatech.edu/faculty/mohan/MSLAB-research-nanobiooptics.htm Squid Lightson a Nanoscale:  Squid Lights on a Nanoscale First, it has a light-producing organ on its underside. How does it produce light? Why, it contains bacteria that produce luminescent light on the nanoscale. Secondly, the squid has stacks of silvery nanoplatelets made of proteins behind the tissue to reflect the light downward from the squid. The light prevents it from casting a shadow when seen from above or forming a silhouette when seen from below. Would somebody turn on the lights, please? http://pubs.acs.org/cen/topstory/8202/8202notw3.html The Hawaiian bobtail squid uses a two part process to hide from predators at night. “You Light Up My Life” orBioluminescence Basics:  'You Light Up My Life' or Bioluminescence Basics Bioluminescence in fireflies is nanoscale. The glow is caused by the exciting of electrons by a firefly’s enzyme. When the electrons quiet down and go back to their stable state, they give off light. They glow to attract mates and communicate. What’s an enzyme? Angler fish use bioluminescent lures to attract fish. http://www.anglerfish.info/ http://pubs.acs.org/cen/science/84/8414biolum.html A “Blue Light Special”:  A 'Blue Light Special' Tiny crustaceans, Ostracods, also known as 'seed shrimp' or 'sea fireflies,' also use this enzyme to produce bioluminescence in courtship. The males produce blue dots in the water, which are used to attract mates. http://www.pisces-conservation.com/index.html?softost.html$softebookmenu.html A close-up using a scanning electron microscope http://pubs.acs.org/cen/science/84/8414biolum.html Jellyfish Lights:  Jellyfish Lights A jellyfish-type invertebrate, called a siphonophore, uses red bioluminescent lures created at the nanoscale to attract prey. Doesn’t it seem odd that it would use red light since red isn’t easily visible underwater? http://www.coml.org/medres/high2005/highlightimages.htm Click here for a weblink to a video and lesson on bioluminescent deep sea organisms. Bioluminescence Lesson:  Bioluminescence Lesson There’s an interesting, though high level, video clip at http://pubs.acs.org/cen/multimedia/84/biolum/Biolum_content.html NSTA provides a lesson on bioluminescence. It can be found at http://www.nsta.org/main/news/stories/science_scope.php?category_ID=87andamp;news_story_ID=52197 http://www.mbayaq.org/efc/living_species/default.asp?hOri=0andamp;hab=9andamp;inhab=182 Hippo Sweat is Nanoscience?:  Hippo Sweat is Nanoscience? Hippo sweat contains compounds that absorb light in the range of 200 – 600 nanometers. This compound protects the hippo’s skin like sunscreen. One of the compounds in hippo sweat, hipposudoric acid, inhibits bacterial growth and is hydrophilic, too. Can you think of ways the hippo benefits from these properties? http://pubs.acs.org/cen/news/8222/8222notw9.html http://www.pbs.org/kratts/world/africa/hippo/index.html Get Ready, Get Set, Drink!:  Get Ready, Get Set, Drink! Imagine you’re a very thirsty tiny beetle in a desert. How can you get a drink? The Namib desert beetle in the deserts of southwest Africa has a novel idea. First it must collect drinking water using its wings, which are waxed and covered with raised unwaxed nanobumps. The bumps attract water (hydrophilic). When enough water collects it rolls down the waxy areas, which repel water (hydrophobic), into the beetle’s mouth. Click here for more information! http://biomechanics.bio.uci.edu/_html/nh_biomech/namib/beetle.htm http://www.newscientist.com/article.ns?id=dn1508 A closeup of the nanobumps on a beetle’s back. But How Does the Water Get to Its Mouth?:  But How Does the Water Get to Its Mouth? Six times a year when the fog blows in from the Atlantic the Namib beetle turns a 45 degree angle to the wind so that the droplets of water from the fog stick to the unwaxed bumps on its back. This water builds up before rolling down the water-repelling waxed troughs on the beetle's back and into its mouth. Speaking of Water…Let’s Look at Snowflakes!:  Speaking of Water… Let’s Look at Snowflakes! Have you ever looked closely at a snowflake and wondered why they’re all different? It’s Because They’re Nano-Flakes!:  For more information click on the following link: http://www.its.caltech.edu/~atomic/snowcrystals/primer/primer.htm It’s Because They’re Nano-Flakes! They build up on the nanoscale, one molecules at a time. Their size and shape is determined by the altitude and air pressure where they are formed. Use the same bottom up construction to make your own snowflakes by clicking on this web link: http://profhorn.meteor.wisc.edu/wxwise/snowflake/makesnow.html Nanoscience Is Everywhere in Nature:  Nanoscience Is Everywhere in Nature Living cells have been using their own nanoscale devices to create structures one atom or molecule at a time for millions of years. To be specific, DNA is copied, proteins are formed, and complex hormones are manufactured by cellular devices far more complex than the most advanced manufacturing processes we have today. http://dallas.bizjournals.com/dallas/stories/2001/09/10/focus2.html?page=3 Click here for an example! “Mighty Oaks from Little Acorns Grow” :  'Mighty Oaks from Little Acorns Grow' For example, an acorn uses the energy within it to read nanoscale DNA. The DNA is coded to sprout roots and leaves. These structures can gather more energy from the soil and the sun. The DNA tells the acorn to rearrange the atoms in soil, air and water to produce an oak tree, a material far more complex than today's material science can produce. Mother Nature:  Mother Nature Mankind has always found inspiration in Mother Nature. Today developing technologies allow us to probe and better understand the nanoscience of Mother Nature.

Related presentations


Other presentations created by Eagle

Practice of International Trade
03. 09. 2007
0 views

Practice of International Trade

final thesis presentation
29. 10. 2007
0 views

final thesis presentation

Bridge Construction for class
30. 12. 2007
0 views

Bridge Construction for class

CIO 01
01. 01. 2008
0 views

CIO 01

30 Sept Cryptography
05. 01. 2008
0 views

30 Sept Cryptography

Poster3 XB
14. 09. 2007
0 views

Poster3 XB

CREATION EVOLUTION
14. 09. 2007
0 views

CREATION EVOLUTION

SUSA502
03. 09. 2007
0 views

SUSA502

cocotutor
10. 10. 2007
0 views

cocotutor

ch11
16. 11. 2007
0 views

ch11

CEM Agro Eng
23. 11. 2007
0 views

CEM Agro Eng

kompella hotnets slides
28. 09. 2007
0 views

kompella hotnets slides

desanker
03. 09. 2007
0 views

desanker

S4 Lavigne
03. 09. 2007
0 views

S4 Lavigne

ECOMM Yalta 2004
04. 10. 2007
0 views

ECOMM Yalta 2004

Stan Abram
12. 10. 2007
0 views

Stan Abram

systheory ecopersp
19. 02. 2008
0 views

systheory ecopersp

crime 1
24. 02. 2008
0 views

crime 1

PierPaoloPasolini
24. 02. 2008
0 views

PierPaoloPasolini

RailShipments
28. 02. 2008
0 views

RailShipments

future truck
29. 02. 2008
0 views

future truck

9 13 07
27. 11. 2007
0 views

9 13 07

goodpracticehei pl
18. 03. 2008
0 views

goodpracticehei pl

eCp 2007 WP GI Prague
21. 03. 2008
0 views

eCp 2007 WP GI Prague

Alien Land Laws and Internment
26. 03. 2008
0 views

Alien Land Laws and Internment

20080311104620774
27. 03. 2008
0 views

20080311104620774

02 EnergyCirculation
07. 04. 2008
0 views

02 EnergyCirculation

Cuando El Viento Sopla 2115
21. 06. 2007
0 views

Cuando El Viento Sopla 2115

Cosas de Gatos 1850
21. 06. 2007
0 views

Cosas de Gatos 1850

Casas Diferentes 1966
21. 06. 2007
0 views

Casas Diferentes 1966

Carta de Navidad 1875
21. 06. 2007
0 views

Carta de Navidad 1875

Carta a los Reyes Magos 1870
21. 06. 2007
0 views

Carta a los Reyes Magos 1870

Barbies 2108
21. 06. 2007
0 views

Barbies 2108

A las puertas de la Navidad 1873
21. 06. 2007
0 views

A las puertas de la Navidad 1873

Amiga 1969
21. 06. 2007
0 views

Amiga 1969

Acertijo 2090
21. 06. 2007
0 views

Acertijo 2090

cb
07. 10. 2007
0 views

cb

emotion 07
20. 02. 2008
0 views

emotion 07

custintermang
28. 03. 2008
0 views

custintermang

CLSAInvestorMeetNov2 006
30. 03. 2008
0 views

CLSAInvestorMeetNov2 006

Piesman
24. 11. 2007
0 views

Piesman

Keynes Fiscal
09. 04. 2008
0 views

Keynes Fiscal

Utah0303
10. 04. 2008
0 views

Utah0303

williams
13. 04. 2008
0 views

williams

trendswrshprevised2
14. 04. 2008
0 views

trendswrshprevised2

LaTeX 5
14. 09. 2007
0 views

LaTeX 5

Oral Health Kindergarten
14. 09. 2007
0 views

Oral Health Kindergarten

MakingDx SN
04. 01. 2008
0 views

MakingDx SN

gfish2002
14. 09. 2007
0 views

gfish2002

Binaries3
28. 11. 2007
0 views

Binaries3

All Presenters
19. 06. 2007
0 views

All Presenters

wri idb draft2
19. 06. 2007
0 views

wri idb draft2

4Design methodology
29. 12. 2007
0 views

4Design methodology

Arriba el animo 2033
21. 06. 2007
0 views

Arriba el animo 2033

tronning
09. 10. 2007
0 views

tronning

Bahrain 2107
21. 06. 2007
0 views

Bahrain 2107

A Veces 1928
21. 06. 2007
0 views

A Veces 1928

Conejos a 50 pesos 2114
21. 06. 2007
0 views

Conejos a 50 pesos 2114

Blanca Navidad 1874
21. 06. 2007
0 views

Blanca Navidad 1874

Esther
14. 09. 2007
0 views

Esther

Acuarelas 1930
21. 06. 2007
0 views

Acuarelas 1930

Adan y Eva 1968
21. 06. 2007
0 views

Adan y Eva 1968

CTS
03. 09. 2007
0 views

CTS

TriTops
02. 01. 2008
0 views

TriTops

Ciudad de Mexico 1973
21. 06. 2007
0 views

Ciudad de Mexico 1973

El Negro Huerta 2038
21. 06. 2007
0 views

El Negro Huerta 2038

Abrazo 1929
21. 06. 2007
0 views

Abrazo 1929

Concurso de coches 2113
21. 06. 2007
0 views

Concurso de coches 2113

07 VC ChromakeyTemplate
11. 10. 2007
0 views

07 VC ChromakeyTemplate

Turkey map
26. 11. 2007
0 views

Turkey map

riverfront training
28. 12. 2007
0 views

riverfront training

canned searches
03. 10. 2007
0 views

canned searches

Christian Bale 1781
21. 06. 2007
0 views

Christian Bale 1781

revitalizing iuds
03. 09. 2007
0 views

revitalizing iuds

revitalizing iuds condensed
03. 09. 2007
0 views

revitalizing iuds condensed

LOC Feb99
14. 09. 2007
0 views

LOC Feb99

EAS306
21. 11. 2007
0 views

EAS306

bertwashington
19. 06. 2007
0 views

bertwashington

HomelandSecurityPanel
04. 03. 2008
0 views

HomelandSecurityPanel

Casa de botellas 2044
21. 06. 2007
0 views

Casa de botellas 2044