NCAR2005 UTLAND

Information about NCAR2005 UTLAND

Published on January 22, 2008

Author: Candelora

Source: authorstream.com

Content

Slide1:  Zong-Liang Yang Guo-Yue Niu Robert E. Dickinson The University of Texas at Austin Modeling Surface and Subsurface Runoff in CLM Prepared for Land Model Working Group Meeting, March 14, 2005 Funded under NASA grant NAG5-12577 Slide2:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide3:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide4:  Performance of Baseline CLM (1) Soil moisture (Sleepers River Catchment): Too low Odd profile (9th layer driest) Daily runoff (Sleepers River Catchment, Vermont, USA): Negative modeling efficiency because of large spikes Surface runoff (fast component) too high Slide5:  Performance of Baseline CLM (2) Monthly runoff (GSWP2 Project): Overestimated Surface runoff (fast component) too high Surface runoff is 80% of total runoff. Slide6:  Parameterization of Runoff in Baseline CLM Guided by four considerations: TOPMODEL: topographic control on the growth and decay of saturated area and groundwater flow 1-D 10-layer soil structure: Topographic data availability: a simple determination of the saturated area, allowing room for improvement when the topographic parameters are available globally. BATS: success in PILPS experiments, esp. PILPS 1c (The Red-Arkansas River Basin) Slide7:  Parameterization of Runoff in Baseline CLM Runoff = Surface runoff + Subsurface runoff Surface runoff Rs = Fsat Qwat + (1 – Fsat) ws4 Qwat TOPMODEL BATS Qwat = Input of water at the soil surface Fsat = Fractional saturated area = Fmax exp(–Dw) ws = averaged soil wetness in the top three soil layers Subsurface Runoff Rsb = Fsat lb exp(–Dw) + (1 – Fsat) Kb wb2B+3 lb = maximum baseflow rate = 10-5 mm s-1 Kb = maximum drainage rate = 0.04 mm s-1 wb = averaged soil wetness in the bottom three soil layers Ksat (z) = Ksat(0) exp(–f z ) Ksat(0) = saturated hydraulic conductivity at the soil surface, determined by soil texture following Cosby et al. (1984); f = 2 (tunable parameter) Slide8:  Problems in the Baseline CLM 1) The second term in surface runoff is redundant and too large. Rs = Fsat Qwat + (1 – Fsat) ws4 Qwat TOPMODEL BATS 2) The second term in subsurface runoff is redundant and too large. Rsb = Fsat lb exp(-Dw) + (1 – Fsat) Kb wb2B+3 3) How to determine Ksat (0) and Ksat(z)? Following Cosby et al. (1984)? Allowing macorpores? How to account for vertical and horizontal Ksat? 4) How to compute Fsat? Constrained by a global constant? By topography? 5) How to determine the water table? By the total head equilibrium? The moving boundary? An explicit groundwater model? Slide9:  Proposed Runoff Scheme in CLM 1) Surface runoff Rs = Fsat Qwat + (1 – Fsat) max(0, Qwat – Imax) 2) Subsurface runoff Rsb = Rsb,max exp (-f zw) simplified from Rsb = [ α Ksat (0) / f ] exp(- λm) exp(- f zw) α= anisotropic factor for different Ksat in vertical and horizontal directions λm= grid-cell averaged topographic index zw= grid-cell mean water table depth 3) Ksat (0) = ksat exp (f Dc) Ksat (z) = Ksat(0) exp(–f z ) ksat is determined by following Cosby et al. (1984). Allowing macropores. 4) Fsat = ∫λ ≥ (λm + f*zw) pdf(λ) dλ 5) The water table is diagnosed from an equilibrium relationship ψ(z) – z = ψsat – zw (i.e., the total head is equal across the soil column layers) Topography-based Runoff Scheme:  Topography-based Runoff Scheme Runoff production mechanism Surface runoff Saturation excess Infiltration excess Subsurface runoff Topographic control Bottom drainage “Over-saturated” water recharged into upper unsaturated layers Infiltration Excess Water Table Depth Saturation Excess Super-saturation Topography Bottom Slide11:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide12:  Maximum Fractional Saturated Area (Fsat,max) Using 1 km × 1 km topographic index (λ) Using Γ-distribution fit to the 1 km data Differences of (Middle – Top) Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ when the water table is at the surface (zw = 0) Slide13:  Defining the Maximum Fractional Saturated Area Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ Fsat,max results when the water table is at or above the surface (zw ≤ 0) Topographic Index λ Slide14:  Simulations over the Sleepers River Basin TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ SIMTOP: Fsat = Fsat,max exp (–0.5 f zw) Fsat,max = 0.42 Slide15:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Ksat, macropores and anisotropic factor:  Ksat, macropores and anisotropic factor ksat depends on soil type (Cosby et al., 1984) Stiglietz et al. (1997) : Ksat(0) = 1000 × ksat α=1, f=3.26 Chen and Kumar (2001): Ksat(0) = exp(f Dc) × ksat = 6 × ksat α=2000, f=1.8 This study: Ksat(0) = exp(f Dc) × ksat = 6 × ksat α=20, f=2 (global); =3.26 (Sleepers River) or Rsb,max = 1.45×10–7m/s 10–7 m/s 10–3 m/s 0 m 1 m 2 m 3 m 10–10 m/s Baseline CLM Stiglietz et al. Chen & Kumar Ksat, macropores and anisotropic factor:  Ksat, macropores and anisotropic factor Slide18:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide19:  Simulations over Various Regional Basins West Siberia East Siberia NW Canada Congo Amazon India E USA W USA C Europe S Africa Sahara Australia N America Eurasia S Hemisphere Slide20:  Simulations over the Sleepers River Basin TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ Rsb,max = 1.45 ×10–7 m/s Chen & Kumar Bottom sealed Bottom NOT sealed Slide21:  Simulations over the Sleepers River Basin 10–7 m/s 10–3 m/s 0 m 1 m 2 m 3 m 10–10 m/s Baseline CLM Stiglietz et al. Bottom NOT sealed Bottom sealed Chen & Kumar TOPMODEL: Fsat = ∫λ ≥ (λm + f*zw) pdf (λ) dλ Rsb,max = 1.45 ×10–7 m/s Slide22:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide23:  Comparison of Simulated Water Table with Measurements in Illinois Slide24:  Outline Introduction Current treatment of runoff in CLM and problems Saturation area Surface runoff Ksat, macropores and anisotropic factor Subsurface runoff Constant versus exponential Ksat Continental-scale simulations Water table Regional-scale simulations Comparison with observations Sensitivity to parameters f Rsub,max Slide25:  Sensitivity to f: Simulations over the Sleepers River Slide26:  Sensitivity to Rsb,max Simulations over the Sleepers River Slide27:  Simulations over the Sleepers River Slide28:  Simulations over the Amazon Basin Coupled CAM2-CLM2 Results in Amazon:  Coupled CAM2-CLM2 Results in Amazon Simplified TOPMODEL produced less surface runoff, allowing more water to infiltrate into deeper soil and to increase soil moisture. Transpiration increases significantly, more than compensating the decrease in the interception loss. As a result, both ET and precipitation show favorable increases. 1-2mm/d Conclusions:  Conclusions Based on offline tests for a small catchment or global continents, the proposed runoff scheme is shown to be robust for a wide range of assumptions including Different methods of Fsat, Based on 1-km topographic parameters Assuming a global constant Constant versus exponential Ksat In the constant profile case, results depend on whether the bottom is sealed or not Different methods of water table. 2) The simulations of soil moisture and runoff are all improved over the baseline version. 3) In the Amazon region, canopy evaporation and surface runoff are reduced, soil is wetter, and both ET and precipitation are increased. Future Work:  Future Work Increase the total soil thickness to ~10 m and make it a geographic variable Need bedrock data, Adjust root depth and distribution, Collect the water table data, Compare with the GRACE data. 2) Global optimization of two calibration parameters (f and Rsub,max). 3) Include (unconfined) aquifer into CLM to study groundwater recharge, discharge, and climate-groundwater interactions. Land Surface, Surface Water and Groundwater:  Land Surface, Surface Water and Groundwater Can be detected by GRACE

Related presentations


Other presentations created by Candelora

inner planets
24. 01. 2008
0 views

inner planets

ir solid laser
11. 01. 2008
0 views

ir solid laser

Laboratories sample handling
25. 02. 2008
0 views

Laboratories sample handling

climate dr mcdougal
09. 01. 2008
0 views

climate dr mcdougal

Helen on 86th Street
10. 01. 2008
0 views

Helen on 86th Street

Bio Ceramics 61 69
11. 01. 2008
0 views

Bio Ceramics 61 69

Regression1
13. 01. 2008
0 views

Regression1

Lockemann
14. 01. 2008
0 views

Lockemann

ln EPSDT baby care
15. 01. 2008
0 views

ln EPSDT baby care

wspa07 17
15. 01. 2008
0 views

wspa07 17

saisharnam
16. 01. 2008
0 views

saisharnam

poster Smith
20. 01. 2008
0 views

poster Smith

TCP4eCH01CRS pg
22. 01. 2008
0 views

TCP4eCH01CRS pg

Basics of Carbon Credits 070621
22. 01. 2008
0 views

Basics of Carbon Credits 070621

chap 17 1
22. 01. 2008
0 views

chap 17 1

Oil Tanker Outlook
23. 01. 2008
0 views

Oil Tanker Outlook

hinduism beliefs
04. 02. 2008
0 views

hinduism beliefs

arvind singhal
04. 02. 2008
0 views

arvind singhal

aaspart2
23. 01. 2008
0 views

aaspart2

PapsatSlideShow
11. 02. 2008
0 views

PapsatSlideShow

6 1 Passive Energy
17. 01. 2008
0 views

6 1 Passive Energy

f06 goals
25. 01. 2008
0 views

f06 goals

RAC BBQ TRENDS
11. 01. 2008
0 views

RAC BBQ TRENDS

JINI
29. 01. 2008
0 views

JINI

motor vehicle safety
31. 01. 2008
0 views

motor vehicle safety

jsp
06. 02. 2008
0 views

jsp

popcorn 3
07. 02. 2008
0 views

popcorn 3

tp NESHAP PortlandCement
13. 02. 2008
0 views

tp NESHAP PortlandCement

shah WiOpt2005
05. 02. 2008
0 views

shah WiOpt2005

MBIII Water Column
12. 01. 2008
0 views

MBIII Water Column

IndiaChina
07. 02. 2008
0 views

IndiaChina

AHsummary
27. 02. 2008
0 views

AHsummary

hubble
03. 03. 2008
0 views

hubble

Ch21 Temporal Ergo
05. 03. 2008
0 views

Ch21 Temporal Ergo

ESYS150 06 lect7
12. 03. 2008
0 views

ESYS150 06 lect7

BrazilOutsourcing
14. 03. 2008
0 views

BrazilOutsourcing

AF no vids
23. 01. 2008
0 views

AF no vids

SRRC Acker Presenation
19. 03. 2008
0 views

SRRC Acker Presenation

powerpointtemplate1
24. 03. 2008
0 views

powerpointtemplate1

cn159 Mas Coma
02. 04. 2008
0 views

cn159 Mas Coma

Becky Brubaker
21. 01. 2008
0 views

Becky Brubaker

18. 04. 2008
0 views

Bartlett Hatchery Reform
22. 04. 2008
0 views

Bartlett Hatchery Reform

accelarator
24. 04. 2008
0 views

accelarator

Saner
07. 05. 2008
0 views

Saner

north vs south
08. 05. 2008
0 views

north vs south

London David Rowe TFL
05. 02. 2008
0 views

London David Rowe TFL

vts 2007
10. 01. 2008
0 views

vts 2007

RichVizCommunication InTime
02. 05. 2008
0 views

RichVizCommunication InTime

garces montserrat
18. 01. 2008
0 views

garces montserrat

Cosmos and Contact
28. 01. 2008
0 views

Cosmos and Contact

Grammar and usage
28. 01. 2008
0 views

Grammar and usage

WQ08 with answers
07. 04. 2008
0 views

WQ08 with answers

MiniMedical School
15. 01. 2008
0 views

MiniMedical School

Fran Doran SOW
21. 01. 2008
0 views

Fran Doran SOW

chp13 ss
12. 02. 2008
0 views

chp13 ss

FGDC Wet 07 19 2005
09. 01. 2008
0 views

FGDC Wet 07 19 2005

Comm409fall2007
21. 01. 2008
0 views

Comm409fall2007

5sept03 notes
25. 01. 2008
0 views

5sept03 notes

17 IE 14March 07
04. 02. 2008
0 views

17 IE 14March 07

0607WH2Rel
10. 03. 2008
0 views

0607WH2Rel

PepTalk poste 07r
24. 01. 2008
0 views

PepTalk poste 07r

u7
14. 02. 2008
0 views

u7

ergonightmare
07. 03. 2008
0 views

ergonightmare

i5000 1r3
03. 03. 2008
0 views

i5000 1r3

Janitors Module1
18. 01. 2008
0 views

Janitors Module1

Lsn 27 SASO
16. 04. 2008
0 views

Lsn 27 SASO

outhred
15. 04. 2008
0 views

outhred

wellness bridge
13. 01. 2008
0 views

wellness bridge

dragonpp
19. 03. 2008
0 views

dragonpp

BrandBuildingAdverts ingSeminar3
10. 01. 2008
0 views

BrandBuildingAdverts ingSeminar3

2002 MM5 Modeling
14. 02. 2008
0 views

2002 MM5 Modeling