P6S1

Information about P6S1

Published on February 16, 2008

Author: Janelle

Source: authorstream.com

Content

Nuclear Physics:  Nuclear Physics size of atoms: take water (H2O) density = 1 gm/cc, atomic weight = 18 gm/mole, (alternately, get mass of one molecule from mass spectrograph) Avagadro’s number = 6 x 1023/mole (1 cm3/gm)*(18 gm/mole) / (6x1023molecules/mole) = 3 x 10-23 cm3/molecule, so datom = V1/3 = 3 x 10-8cm = 3 x 10-10 m. Nuclear Physics:  Nuclear Physics size of nucleus: by Rutherford scattering, dnucleus = 10-15 m for light nucleus. charge of nucleus: balances electronic charges in atom, so = +integer number of e’s mass of nucleus: from mass spectrograph, have mass as integer number of amu’s, but mass # and charge # are not usually the same! Nuclear Physics:  Nuclear Physics Stability: see sheet detailing stable isotopes Radiations: 1) a, b-, b+, g are all emitted; 2) protons and neutrons are NOT emitted, except in the case of mass numbers 5 and 9; 3) alphas are emitted only for mass numbers greater than 209, except in the case of mass number 8. Alpha () decay:  Alpha () decay example: 92U238 90Th234 + 2a4 + g (it is not obvious whether there is a gamma emitted; this must be looked up in each case) Mass is reduced! NOTE: 1. subscripts must be conserved (conservation of charge) 92 = 90 + 2 2. superscripts must be conserved (conservation of mass) 238 = 234 + 4 Beta minus (b-) decay:  Beta minus (b-) decay example: 6C14 7N14 + -1b0 + 0u0 (a neutron turned into a proton by emitting an electron; however, one particle [the neutron] turned into two [the proton and the electron]. Charge and mass numbers are conserved, but since all three are fermions [spin 1/2 particles], angular momentum, particle number, and energy are not! Need the anti-neutrino [0u0] to balance everything! Positron (b+) decay:  Positron (b+) decay example: 6C11 5B11 + +1b0 + 0u0 (a proton turned into a neutron by emitting a positron; however, one particle [the proton] turned into two [the neutron and the positron]. Charge and mass numbers are conserved, but since all three are fermions [spin 1/2 particles], angular momentum, particle number, and energy are not! Need the neutrino [0u0] to balance everything! Electron Capture:  Electron Capture An alternative to positron emission is “Electron Capture”. Instead of emitting a positron, some nuclei appear to absorb an electron and emit a gamma ray. The net result is the same: a proton is changed into a neutron and energy is released in the process. Nuclear Physics:  Nuclear Physics General Rules: 1) a emitted to reduce mass, only emitted if mass number above 209 2) b- emitted to change neutron into proton, happens when have too many neutrons 3) b+ emitted (or electron captured) to change proton into neutron, happens when have too few neutrons 4) g emitted to conserve energy in reaction, may accompany a or b. Mass Defect & Binding Energy:  Mass Defect & Binding Energy By definition, mass of 6C12 is 12.00000 amu. The mass of a proton (plus electron) is 1.00782 amu. (The mass of a proton by itself is 1.00728 amu, and the mass of an electron is 0.00055 amu.) The mass of a neutron is 1.008665 amu. Note that 6*mproton+e + 6*mneutron > mC-12 . Where did the missing mass go to? Mass Defect & Binding Energy:  Mass Defect & Binding Energy Similar question: The energy of the electron in the hydrogen atom is -13.6 eV. Where did the 13.6 eV (amount from zero) go to in the hydrogen atom? Answer: In the hydrogen atom, this energy (called the binding energy) was emitted when the electron “fell down” into its stable orbit around the proton. Mass Defect & Binding Energy:  Mass Defect & Binding Energy Similarly, the missing mass was converted into energy (E=mc2) and emitted when the carbon-12 atom was made from the six protons and six neutrons: Dm = 6*mproton + 6*mneutron - mC-12 = 6(1.00782 amu) + 6(1.008665 amu) - 12.00000 amu = .099 amu; BE = Dm*c2 = (0.099 amu)*(1.66x10-27kg/amu)*(3x108m/s)2 = 1.478x10-11J*(1 eV/1.6x10-19J) = 92.37 MeV Mass Defect & Binding Energy:  Mass Defect & Binding Energy For Carbon-12 we have: BE = Dm*c2 = 92.37 MeV If we consider the binding energy per nucleon, we have for carbon-12: BE/nucleon = 92.37 MeV /12 = 7.70 MeV/nucleon The largest BE/nucleon happens for the stable isotopes of iron (about 8.8 MeV/nucleon). Rate of decay:  Rate of decay From experiment, we find that the amount of decay of a radioactive material depends only on two things: the amount of radioactive material and the type of radioactive material (the particular isotope). The rate of decay does NOT depend on temperature, pressure, chemical composition, etc. Rate of decay:  Rate of decay Mathematically, then, we have: dN/dt = -l*N where l is a constant that depends on the particular isotope, N is the number of radioactive isotopes present, and the minus sign comes from the fact that dN/dt is DECREASING rather than growing. Rate of decay:  Rate of decay We can solve this differential equation for N(t): dN/dt = -lN , or dN/N = -l dt , or log (N/No) = -l t , or N(t) = No e-lt . Further, if we define activity, A, as A = -dN/dt then A = lN = lNoe-lt = Aoe-lt ; which means that the activity decreases exponentially with time also. Half Life:  Half Life N(t) = No e-lt Does N(t) ever reach zero? Mathematically, it just approaches zero. But in physics we have an integer number of radioactive isotopes, so we can either get down to 1 or 0, but not 1/2. Thus the above is really only an approximation of what actually happens. Half Life:  Half Life N(t) = No e-lt The number of radioactive atoms does decrease with time. But is there a definite time in which the number decreases by half, regardless of what the beginning number is? YES: N(T=half life) = No/2 = Noe-lT , or 1/2 = e-lT or lT = ln(2), or T(half life) = ln(2) / l . Half Life:  Half Life Review: N(t) = No e-lt A = lN = Aoe-lt T(half life) = ln(2) / l . We can find T(half life) if we can wait for N (or A) to decrease by half. We can find l by measuring N and A. If we know either l or T(half life), we can find the other. Activity:  Activity Review: N(t) = No e-lt A = lN = Aoe-lt T(half life) = ln(2) / l . If the half life is large, l is small. This means that if the radioactive isotope will last a long time, its activity will be small; if the half life is small, the activity will be large but only for a short time! Probability:  Probability Why do the radioactive isotopes decay in an exponential way? We can explain this by using quantum mechanics and probability. Each radioactive atom has a certain probability (based on the quantum theory) of decaying in any particular time frame. This is explained more fully in the computer homework on Half-lives, Vol 6, #4. Computer Homework:  Computer Homework Computer Homework on Radiation Statistics, Vol. 6, #3, describes and then asks questions about how to deal with something that is probablistic in nature. Computer Homework on Nuclear Decay, Vol. 6, #5, describes and then asks questions about the nuclear decay schemes we have just talked about. Radioactivity around us:  Radioactivity around us If radioactive atoms decay, why is there still radioactive atoms around? Either they were made not too long ago, or their half-lives have to be very long compared to the age of the earth. Let’s see what there is around us, and then see what that implies. Radioactivity around us:  Radioactivity around us Carbon-14: Half life of 5730 years. In this case, we think that carbon-14 is made in the atmosphere by collisions of Nitrogen-14 with high speed cosmic neutrons: on1 + 7N14 1p1 + 6C14 . We think that this process occurs at the same rate that C-14 decays, so that the ratio of C-14 to N-14 has remained about the same in the atmosphere over time. Radioactivity around us:  Radioactivity around us This is the assumption that permits carbon dating: plants take up carbon dioxide from the atmosphere, keep the carbon, and emit the oxygen. When plants die, they no longer take up new carbon. Thus the proportion of carbon-14 to carbon 12 should decay over time. If we measure this proportion, we should be able to date how long the plant has been dead. Radioactivity around us:  Radioactivity around us Example of carbon dating: The present day ratio of C-14 to C-12 in the atmosphere is 1.3x10-12 . The half-life of C-14 is 5,730 years. What is the activity of a 1 gm sample of carbon from a living plant? A = lN = [ln(2)/5730 years]*[6x1023 atoms/mole * 1mole/12 grams * 1 gram]*[1.3x10-12 ] = 7.86x106/yr = .249/sec = 15.0/min . Radioactivity around us:  Radioactivity around us Thus, for one gram of carbon, Ao = 15.0/min . If a 1 gram carbon sample from a dead plant has an activity of 9.0/min, then using: A = Aoe-lt , we have 9.0/min = 15.0/min * e-(ln2/5730yrs)t , or -(ln2/5730 yrs)*t = ln(9/15) , or t = 5730 years * ln(15/9) / ln(2) = 4,200 years. Radioactivity around us:  Radioactivity around us Another common element that has a radioactive isotope is potassium. About 0.012% of all potassium atoms are K-40 which is radioactive. (Both 19K39 and 19K41 are stable, and 18Ar40 is stable.) Unlike carbon-14, we do not see any process that makes K-40, but we do note that K-40 has a half life of about 1.3 billion years. Radioactivity around us:  Radioactivity around us The activity of 1 gram of carbon due to C-14 was about .25/sec = .25 Bq. The activity of 1 gram of K is: A = lN = [ln(2)/1.26x109yrs]*[6x1023/39]*[.00012] = 32/sec = 32 Bq. [A decay/sec has the name Becquerel, Bq.] (The half life of C-14 is smaller so the activity should be larger, but the ratio of C-14 to C-12 is also quite small so the activity ends up smaller.) Radioactivity around us:  Radioactivity around us Another radioactive isotope found in dirt is 92U238 . Since it is well above the 209 mass limit, it gives rise to a whole series of radioactive isotopes with mass numbers 238, 234, 230, 226, 222, 218, 214, 210. The 226 isotope is 88Ra226, which is the isotope that Marie Curie isolated from uranium ore. The 222 isotope is 86Rn222 which is a noble gas. Radioactivity around us:  Radioactivity around us The U-238 itself has a half life of 4.5 billion years. Thus, like potassium, the activity per gram will be fairly small. The Ra-226 has a half life of 1,600 years, so that when it is isolated from the other decay products of the U-238, it will have a high activity per gram. This activity is called a Curie, and 1 Curie = 3.7x1010 Bq. Radioactivity around us:  Radioactivity around us The 86Rn222 has a half-life of 3.7 days. Because it’s half life is so small, very little remains. But what little does, adds to our exposure. Since Radon is a noble gas, it bubbles to the surface and adds radioactivity to the air that we breathe. Indoor air has something like a picoCurie per liter, with the exact amount depending on the soil, building materials and ventilation. Radioactivity around us:  Radioactivity around us Since high mass radioactive isotopes can only reduce their mass by four, there should be four radioactive series. U-238 starts one of the four. Although there are higher mass isotopes, like Pu-242, all these other isotopes have half lives much smaller than U-238’s, and we don’t see these existing on their own on the earth. (Pu-242 has a half life of 379,000 years.) Radioactivity around us:  Radioactivity around us The longest lived isotope in a second series is 92-U-235, which has a half life of 0.7 billion years. It’s half life is much smaller than U-238’s, and there is only 0.7% of U-235 compared to 99.3% of U-238 in uranium ore. (Pu-239 has a half life of 24,360 yrs.) The longest lived isotope in a third series is 90-Th-232, which has a half life of 13.9 billion years. Radioactivity around us:  Radioactivity around us The longest lived isotope in the fourth series is 93-Np-237 with a half life of 2.2 million years. Note: million NOT billion. We do not find any of this atom or this series on the earth (unless we ourselves make it). Together this data on half lives and abundance of elements provides evidence that is used to date the earth - to about 4.5 billion years old. X-rays:  X-rays How does an x-ray machine work? We first accelerate electrons with a high voltage (several thousand volts). We then allow the high speed electrons to smash into a target. As the electrons slow down on collision, they can emit photons - via photoelectric effect or Compton scattering. X-rays:  X-rays However, the maximum energy of the electrons limits the maximum energy of any photon emitted. In general glancing collisions will give less than the full energy to any photons created. This gives rise to the continuous spectrum for x-ray production. X-rays:  X-rays If an electron knocks out an inner shell electron, then the atom will refill that missing electron via normal falling of electrons to lower levels. This provides a characteristic emission of photons, and depends on the target material. For the inner most shell, we can use a formula similar to the Bohr atom formula: X-rays:  X-rays Eionization = 13.6 eV * (Z-1)2 where the -1 comes from the other inner shell electron. If the electrons have this ionization energy, then they can knock out this inner electron, and we can see the characteristic spectrum for this target material. For iron, the ionization energy is: 13.6 eV * (26-1)2 = 1e * 8500 volts. X-rays:  X-rays This process was used to actually correctly order the periodic table of elements. It was first done on the basis of mass, but since there are different isotopes with different masses for the same element, this was not completely trustworthy. This method using x-rays did actually reverse the order of a couple of elements. X-rays:  X-rays Note: the gamma rays emitted in nuclear processes are NOT related to the electron orbits - they are energy emitted by the nucleus and not the atom. X and g ray penetration:  X and g ray penetration High energy photons interact with material in three ways: the photoelectric effect (which dominates at low energies), Compton scattering, and pair production (which dominates at high energies). But whether one photon interacts with one atom is a probablistic event. This is similar to radioactive decay, and leads to a similar relation: X and g ray penetration:  X and g ray penetration I = Io e-mx where m depends on the material the x-ray is going through. In a similar way to half lives, we can define a half-value-layer, hvl, where hvl = ln(2)/m . Since the probability of hitting changes with energy, m also depends on the energy of the x-ray. X and g ray penetration:  X and g ray penetration m 1 MeV Energy pair production Compton Scattering photoelectric effect total Measuring Radioactivity:  Measuring Radioactivity How do we measure radioactivity? What is the source of the health effects of radiation? Can we devise a way to measure the health effects of radiation? Measuring Radioactivity:  Measuring Radioactivity How do we measure radioactivity? The Bq (dis/sec) and Curie (1 Ci = 3.7 x 1010 Bq) measure how many decays happen per time. However, different radioactive materials emit different particles with different energies. What is the source of the health effects of radiation? Radiation (a, b, g) ionizes atoms. Ionized atoms are important to biological function, and so radiation may interfere with biological functions. Can we devise a way to measure the health effects of radiation? Measuring Health Effects:  Measuring Health Effects Can we devise a way to measure the health effects of radiation? A unit that directly measures ionization is the Roentgen (R) = (1/3) x 10-9 Coul created per cc of air at STP. This uses air, since it is relatively easy to collect the charges due to ionization. It is harder to do in biological material, so this method is best used as a measure of EXPOSURE dose. Measuring Health Effects:  Measuring Health Effects Can we devise a way to measure the health effects of radiation? 2. In addition to measuring ionization ability in air, we can also measure the energy that is absorbed by a biological material: Rad = .01 J/kg MKS: Gray (Gy) = 1 J/kg = 100 rads. This is called an ABSORBED dose. Generally, one Roentgen of exposure will give one rad of absorption. Measuring Health Effects:  Measuring Health Effects Can we devise a way to measure the health effects of radiation? There is one more aspect of radiation damage to biological materials that is important - health effects depend on how concentrated the damage is. Measuring Health Effects:  Measuring Health Effects Gamma rays (high energy photons) are very penetrating, and so generally spread out their ionizations (damage). Beta rays (high speed electrons) are less penetrating, and so their ionizations are more concentrated. Alphas (high speed helium nuclei) do not penetrate very far since their two positive charges interact strongly with the electrons of the atoms in the material through which they go. Measuring Health Effects:  Measuring Health Effects This difference in penetrating ability (and localization of ionization) leads us to create an RBE (radiation biological equivalent) factor and a new unit: the rem. The more localized the ionization, the higher the RBE. # of rems = RBE * # of rads . This is called an EFFECTIVE dose. RBE for gammas = 1; RBE for betas = 1 to 2; RBE for alphas = 10 to 20. Radiation Rates and Radiation Amounts:  Radiation Rates and Radiation Amounts Note that Activity (in Bq or Ci) is a rate. It tells how fast something is decaying with respect to time. Note that Exposure, Absorption, and Effective doses are all amounts. They do not tell how fast this is occurring with respect to time. Levels of Radiation and Health Effects:  Levels of Radiation and Health Effects To give some scale to the radiation levels in relation to their health effects, let’s consider the “background” radiation. Plants take up carbon, including radioactive carbon-14, from the air. Therefore, all the food we eat and even our bodies have carbon-14 and so are radioactive to some extent. We need Potassium to live, and some of that potassium is K-40. This also contributes to our own radioactivity. Levels of Radiation and Health Effects:  Levels of Radiation and Health Effects In addition to our own radioactivity (and our food), we receive radiation from: a) space in the form of gamma rays; the atmosphere does filter out a lot, but not all; b) the ground, since the ground has uranium and thorium; c) the air, since one of the decay products of uranium is radon, a noble gas. If the Uranium is near the surface, the radon will percolate up and enter the air. Levels of Radiation and Health Effects:  Levels of Radiation and Health Effects The amount of this background radiation varies by location. The average background radiation in the U.S. is around 200 millirems per year. This value provides us with at least one benchmark by which to judge the health effects of radiation. Levels of Radiation and Measurable Health Effects:  Levels of Radiation and Measurable Health Effects 200 millirems/year: background Here are some more benchmarks based on our experience with acute (short time) doses: 20,000 millirems: measurable transient blood changes; 150,000 millirems: acute radiation sickness; 200,000 millirems: death in some people; 350,000 millirems: death in 50% of people. Low Level Effects of Radiation:  Low Level Effects of Radiation The effects of low level radiation are hard to determine. There are no directly measurable biological effects at the background level. Long term effects of radiation may include heightened risk of cancer, but many different things have been related to long term heightened risk of cancer. Separating out the different effects and accounting for the different amounts of low level radiation make this very difficult to determine. Low Level Effects of Radiation:  Low Level Effects of Radiation At the cellular level, a dose of 100 millirems of ionizing radiation gives on average 1 "hit" on a cell. (So the background radiation gives about 2 hits per year to each cell.) There are five possible reactions to a “hit”. 1. A "hit" on a cell can cause DNA damage that leads to cancer later in life. Note: There are other causes of DNA damage, a relatively large amount from normal chemical reactions in metabolism. Low Level Effects of Radiation:  Low Level Effects of Radiation 2. The body may be stimulated to produce de-toxifying agents, reducing the damage done by the chemical reactions of metabolism. 3. The body may be stimulated to initiate damage repair mechanisms. Low Level Effects of Radiation:  Low Level Effects of Radiation 4. The cells may kill themselves (and remove the cancer risk) by a process called apoptosis, or programmed cell death (a regular process that happens when the cell determines that things are not right). 5. The body may be stimulated to provide an immune response that entails actively searching for defective cells - whether the damage was done by the radiation or by other means. Low Level Effects of Radiation:  Low Level Effects of Radiation There are two main theories: 1. Linear Hypothesis: A single radiation “hit” may induce a cancer. Therefore, the best amount of radiation is zero, and any radiation is dangerous. The more radiation, the more the danger. This says effect #1 is always more important than effects 2-5. Low Level Effects of Radiation:  Low Level Effects of Radiation 2. Hormesis Hypothesis: A small amount of radiation is actually good, but a large amount of radiation is certainly bad. Many chemicals behave this way - for example B vitamins: we need some to live, but too much is toxic. Vaccines are also this way: we make ourselves a little sick to build up our defenses against major illnesses. This theory says that at low levels, effects 2-5 are more important than effect 1. Radiation Treatments:  Radiation Treatments If high doses of radiation do bad things to biological systems, can radiation be used as a treatment? Ask yourself this: does a knife do harm to biological systems? If if does, why do surgeons use scalpels? Fast growing cancer cells are more susceptible to damage from radiation than normal cells. For cancer treatment, localized (not whole-body) doses regularly exceed 10,000,000 mrems.

Related presentations


Other presentations created by Janelle

web2001 5 potato fungicide
31. 12. 2007
0 views

web2001 5 potato fungicide

Acupuncture
04. 01. 2008
0 views

Acupuncture

Networking Devices
01. 01. 2008
0 views

Networking Devices

Som de Cinema
24. 10. 2007
0 views

Som de Cinema

Cataract  History  05
02. 05. 2008
0 views

Cataract History 05

GEC NEVC 0ct 06
28. 09. 2007
0 views

GEC NEVC 0ct 06

LECTURE 7
03. 10. 2007
0 views

LECTURE 7

TS2 2 1
04. 10. 2007
0 views

TS2 2 1

saferoom
07. 10. 2007
0 views

saferoom

cpt
16. 10. 2007
0 views

cpt

Presentation media use
17. 10. 2007
0 views

Presentation media use

MosbysNursingCONSULT Training
29. 09. 2007
0 views

MosbysNursingCONSULT Training

maws3 5883
23. 10. 2007
0 views

maws3 5883

Presentacion PPP Panama
22. 10. 2007
0 views

Presentacion PPP Panama

sankar jag
29. 10. 2007
0 views

sankar jag

G020213 00
29. 10. 2007
0 views

G020213 00

jan20wrf
03. 10. 2007
0 views

jan20wrf

Contexto Latinoamericano 2005
22. 10. 2007
0 views

Contexto Latinoamericano 2005

BLRB08 2 rbs
11. 12. 2007
0 views

BLRB08 2 rbs

CrystalPP
12. 10. 2007
0 views

CrystalPP

07 Pilz
19. 10. 2007
0 views

07 Pilz

Lec3 APS301 Slideshow
25. 10. 2007
0 views

Lec3 APS301 Slideshow

Hill Ch 003 part 3 03
31. 10. 2007
0 views

Hill Ch 003 part 3 03

Foolish Fragments
01. 11. 2007
0 views

Foolish Fragments

pp hematoma
06. 11. 2007
0 views

pp hematoma

file0068
06. 11. 2007
0 views

file0068

Biodiesel Production
07. 11. 2007
0 views

Biodiesel Production

turkey presentation
21. 11. 2007
0 views

turkey presentation

Turkey and the EU
23. 11. 2007
0 views

Turkey and the EU

chap14 07
14. 12. 2007
0 views

chap14 07

The Clash of Civilizations
23. 12. 2007
0 views

The Clash of Civilizations

grace agnew
20. 11. 2007
0 views

grace agnew

IX Aerosol
03. 01. 2008
0 views

IX Aerosol

Malignant Wounds
05. 01. 2008
0 views

Malignant Wounds

224 121676
07. 01. 2008
0 views

224 121676

Monday lab ppt presentation
10. 10. 2007
0 views

Monday lab ppt presentation

Sailor Relationship Management
08. 10. 2007
0 views

Sailor Relationship Management

Schischke Penang Label v2
01. 10. 2007
0 views

Schischke Penang Label v2

tomography
15. 10. 2007
0 views

tomography

Flowering2
17. 12. 2007
0 views

Flowering2

INMET training course v4
28. 12. 2007
0 views

INMET training course v4

landmarks And Monuments
12. 10. 2007
0 views

landmarks And Monuments

EARSS december 1 06
19. 10. 2007
0 views

EARSS december 1 06

Presen 1
10. 10. 2007
0 views

Presen 1

mtgbog07 smith
19. 02. 2008
0 views

mtgbog07 smith

Viktoras Seskauskas
28. 11. 2007
0 views

Viktoras Seskauskas

Canadian literature powerpoint4
12. 03. 2008
0 views

Canadian literature powerpoint4

ses3 1545 Sethu Raman
30. 09. 2007
0 views

ses3 1545 Sethu Raman

A105 024 Cosmo
16. 10. 2007
0 views

A105 024 Cosmo

communication 2
27. 11. 2007
0 views

communication 2

Performance of DFT
31. 10. 2007
0 views

Performance of DFT

investment strategy
09. 04. 2008
0 views

investment strategy

Analyst meet
17. 04. 2008
0 views

Analyst meet

Sess 1 Zhang Xizhen
10. 10. 2007
0 views

Sess 1 Zhang Xizhen

2205 Joao Carlos
26. 11. 2007
0 views

2205 Joao Carlos

Single Payer101
07. 05. 2008
0 views

Single Payer101

dentalhealth
08. 05. 2008
0 views

dentalhealth

AACBelecs2004
08. 05. 2008
0 views

AACBelecs2004

Extending the SpanishWordNet
31. 10. 2007
0 views

Extending the SpanishWordNet

SCOPE991001
02. 05. 2008
0 views

SCOPE991001

SupportGroup031106
02. 05. 2008
0 views

SupportGroup031106

Martina OConnor
02. 05. 2008
0 views

Martina OConnor

dns pres michaelson roots
30. 10. 2007
0 views

dns pres michaelson roots

m101
09. 10. 2007
0 views

m101

CaseEUvirtuellefabrik
15. 10. 2007
0 views

CaseEUvirtuellefabrik

hou leong
10. 10. 2007
0 views

hou leong

DeSangroValencia
31. 10. 2007
0 views

DeSangroValencia

Intro to Pod biomech
30. 04. 2008
0 views

Intro to Pod biomech

wspa07 23
26. 03. 2008
0 views

wspa07 23

95 Romi 25mag
19. 10. 2007
0 views

95 Romi 25mag

Tue1530 137
09. 10. 2007
0 views

Tue1530 137

Helping students help themselves
30. 10. 2007
0 views

Helping students help themselves

XPath
18. 10. 2007
0 views

XPath

GSB presentation4
29. 12. 2007
0 views

GSB presentation4

tornado sample slides
02. 10. 2007
0 views

tornado sample slides

vbq
09. 10. 2007
0 views

vbq

sullivan list
08. 10. 2008
0 views

sullivan list

Moore Plasma Circulation ESSE06
02. 11. 2007
0 views

Moore Plasma Circulation ESSE06

biod145 lecture4 bb
16. 10. 2007
0 views

biod145 lecture4 bb

Final Spring 2003 Presentation
06. 03. 2008
0 views

Final Spring 2003 Presentation

Provisu SSIM2006
19. 10. 2007
0 views

Provisu SSIM2006

WDHSJuly505
20. 02. 2008
0 views

WDHSJuly505

30th Anniv USSP
17. 10. 2007
0 views

30th Anniv USSP

Prion2005
15. 10. 2007
0 views

Prion2005

imperialism 2
22. 10. 2007
0 views

imperialism 2

Lipchitz AFDonCatRisk
23. 10. 2007
0 views

Lipchitz AFDonCatRisk

Cumberland
26. 11. 2007
0 views

Cumberland

606
16. 11. 2007
0 views

606

GAIC5Oct04
31. 10. 2007
0 views

GAIC5Oct04

eceatcz
20. 03. 2008
0 views

eceatcz

upa nyc jonathan bloom
04. 10. 2007
0 views

upa nyc jonathan bloom

ssuo robo3
15. 11. 2007
0 views

ssuo robo3

nuccio lanza
15. 11. 2007
0 views

nuccio lanza

Haroldo Sustainab Develop 0607
30. 10. 2007
0 views

Haroldo Sustainab Develop 0607

presentation eichhorn jan
16. 11. 2007
0 views

presentation eichhorn jan

ling411 23
19. 11. 2007
0 views

ling411 23

DYB US PRC
16. 10. 2007
0 views

DYB US PRC

PHN0202a
13. 03. 2008
0 views

PHN0202a

10 2205 HISTORIA EUA
13. 11. 2007
0 views

10 2205 HISTORIA EUA

ChineseAmericans
30. 10. 2007
0 views

ChineseAmericans

apgrid ggf4
09. 10. 2007
0 views

apgrid ggf4

kur
26. 10. 2007
0 views

kur

HIS104 Lecture05
31. 10. 2007
0 views

HIS104 Lecture05

Harvard Presentation
12. 10. 2007
0 views

Harvard Presentation

wilhelmson
02. 10. 2007
0 views

wilhelmson

MLI Site Visit 4 98 overview
29. 09. 2007
0 views

MLI Site Visit 4 98 overview