Packaging

Information about Packaging

Published on January 10, 2008

Author: Sigfrid

Source: authorstream.com

Content

Slide1:  Packaging Dr Dave Elder and Dr Simon Mills, GSK Cape Town, South Africa 16-21st April, 2007 Introduction:  Chosing the most Appropriate Pack Blister Packs Container/Closures General Overview Bottles Blister Packs Injectables Tubes Inhalation/IntraNasal products Regulatory US, EU, Pharmacopoeial Extractable/Leachables Packaging Development Introduction Slide3:  Protection stability test conditions Commercial image market requirements/trends dosing/patient compliance security/tamper evidence manufacturing economics - COG BASIC REQUIREMENTS Legislation E.g. EC Packaging and Packaging Waste Directive Compatibility PACKAGING Choosing the most appropriate pack Regulatory Corporate Global Quality Policies Slide4:  ADDITIONAL DRIVERS/FUTURE CHALLENGES Moisture sensitive drugs increasing barrier requirements Novel delivery systems Emphasis on speed to market Control of R&D Expenditure/resource - number of stability studies Global - Regional - Local packs Anti-counterfeiting, illegal cross border trading Multiple studies for different packs vs. Year-on-Year manufacturing costs Pharmacogenomics - Personalised medicines Demographic change - Ageing population PACKAGING Choosing the most appropriate pack Slide5:  Some factors are territory specific, e.g. Environment EU Packaging and Packaging Waste Directive US - no direct equivalent Presentation e.g. for solid dose US prefer bottles EU/RoW prefer blister packs Child resistance requirements US Legal requirement with few exceptions Clear blisters, peel-push, tear notch, secondary CR pack EU/RoW Legal requirement in only 4 EU member states & for very limited list of products Push through blisters, opaque PACKAGING Choosing the most appropriate pack Packaging Development:  Packaging Development The WVTR through the container is determined by container wall thickness permeability of the packaging material difference between the external and internal relative humidity environments Driving force for the water flux through the container Waterman et al (1) determined the theoretical rate of water permeation through a standard 60-cc bottle when stored at 40C/75%RH. This equated to an uptake of 1mg of water per day. They commented that even if the product had been packed under low water vapour conditions the relative humidity conditions within the container would be re-equate to 50%RH within 1 day. The WVTRs (see Table) for some common packaging materials were reported by Waterman et al (2). References: (1) K.C. Waterman, R.C. Adami, K.M. Alsante, A.S. Antipas, D.R. Arenson, R. Carrier, J. Hong, M.S. Landis, F. Lombardo, J.C. Shah, E. Shalaev, S.W. Smith and H. Wang, Pharm. Dev. and Tech., 7 (2002b) 113. Packaging Development:  Packaging Development Desiccants have been utilised to control the exposure of products to the ingress of moisture. Desiccants vary in their capacity and the rate that they adsorb/absorb ingressed moisture. Silica gel is very efficient at absorbing moisture at high relative humidities, but comparatively poor at lower relative humidities Molecular sieve desiccants - the opposite scenario prevails As a consequence, more molecular sieve is required at higher relative humidities, and the greater the handling precautions that are required during packaging operations. Based on the calculated WVTR of known container components and the rate of moisture adsorbed by desiccants, the amount of desiccant that would be required to maintain a specified relative humidity over the product’s shelf-life can be determined (4). References: (4) L. Dobson, J. Packag. Technol., 1 (1987) 127-131 Slide8:  Cold Form Aluminium 0.00 Aclar ® 33C 0.08 Aclar ® UltRx2000 0.11 - 0.12 Aclar ® 22C 0.22 Aclar ® SupRx 900 0.23 - 0.26 Aclar ® 22A 0.31 - 0.34 PVC/80g PVDC 0.31 Aclar ® Rx160 0.39 - 0.42 Aclar ® 33C 0.42 PVC/60g PVDC 0.47 - 0.6 PVC/40g PVDC 0.7 - 0.75 PP 0.7 - 1.47 PVC 2.4 - 4 Aclar ® is a registered trade mark of Allied Signal PACKAGING Choosing the most appropriate pack Barrier Properties (typical MVTR g/m2/day 38 C/90%RH) Slide9:  Cost Barrier PVC PVC/PVDC 40gsm ACLAR®Rx160 PVC/PE/PVDC ACLAR® UltRx2000 ACLAR® SupRx900 PP COST IS AN IMPORTANT FACTOR Stability driver Cost driver PACKAGING Choosing the most appropriate pack Barrier Performance versus Cost COLD FORM FOIL Packaging Development:  Packaging Development Similar considerations are relevant to protection of products that are labile to oxidative degradation. The permeability of plastic containers to oxygen ingress has also been evaluated (OVTR), and is summarised. Derived from Wang et al, 1998 (4) References: (4) Y. Wang, A.J. Easteal, and X.D. Chen, Packag. Technol. Sci., 11 (1998) 169 Packaging Development:  Packaging Development Waterman et al (1) determined the theoretical rate of oxygen permeation through a standard 30-cc bottle when stored in a well sealed container This equated to an uptake of 0.2mMol of oxygen per year In addition to permeation through the container walls, the key vulnerability in any container-closure system is the closure. With screw-topped closures leakage can be significant. Hence for oxidatively labile dosage forms an oxygen impermeable seal is required, and induction heat sealed containers are particularly useful. Levels of oxygen in the headspace of the container-closure can be significant, and packaging under an inert atmosphere although doable is problematical. Packaging Development:  Packaging Development Impact of Oxidative Instability of Container-Closure Slide13:  What is First Intent? Preferred range of pack/material options to be used for new products Agreed between R&D and factory Identical global materials Fully aligned with Procurement sourcing strategies Secure/robust sourcing Minimises R&D resource Supports supply site transfers (like for like; identical) Global blister material first intent in place since 2003 Solid dose bottle and closure first intent under development PACKAGING First Intent Slide14:  MATERIALS (hierarchy of choice based on product stability) Material should preferably be opaque white unless clear is a specific market requirement (eg US, Japan) Aclar should be restricted to applications where cold form is not technically or commercially acceptable due to product or pack size, ie larger products (further guidance to be defined) Aclar® is registered trademark of Honeywell Inc PACKAGING First Intent – Blister base Slide15:  Complexity reduction Standardisation and rationalisation of components Reduced number of change-overs at factory sites Resource demand reduction R&D, Pack Dev, Procurement, Sites use ‘off the shelf’ solution for majority of products. Flexibility across factory sites without increased Regulatory activity. Risk Mitigation Commercial Leverage Current Future Bottles and Closures: Benefits PACKAGING Bottles:  BOTTLE Glass type III (solids) type I (for inhaled solutions) Plastic low density polyethylene LDPE high density polyethylene HDPE polypropylene PP polyester PET, PETG Cyclo-olefin copolymer (COC) PACKAGING Bottles PACKAGING Closures:  Plastic - wadless or lined, CR (child resistant), CT (continuous thread), snap fit Metal - screw, ROPP Liner – cork, pulpboard, EPE; flowed in gasket product contact materials/facings : PVDC, Saran, Saranex, Melinex, EPE, Vinyl, Foamed PVC Induction heat seals Pulpboard Wax Foil Polyester Heatseal film/coating PACKAGING Closures Reseal liner Induction Liner PACKAGING Closures - examples:  PACKAGING Closures - examples Two piece Child Resistant (CR) with Induction Heat Seal Continuous thread (CT), plastic screw closure PACKAGING Solid Dose – Blister Packs:  THERMOFORM BLISTERS plastic base web blister formed with aid of heating low to high barrier PACKAGING Solid Dose – Blister Packs Product contact layers: For PVC or PVC/Aclar = PVC For PVC/PVDC = PVDC For Lid foil = heat seal lacquer PACKAGING Solid Dose – Blister Packs:  Foil Laminate – e.g. OPA/foil/PVC, or OPA/foil/PP Lidding Foil COLD FORM BLISTER blister formed mechanically (no heat) high barrier PACKAGING Solid Dose – Blister Packs Product contact layers: For base = PVC (or PP) For lid foil = heat seal lacquer PACKAGING Solid Dose – Blister Packs:  Lidding Foil Foil Laminate – e.g. OPA/foil/PVC TROPICALISED BLISTER thermoform blister plus cold form tray once tray opened, in use life determined by primary thermoform blister high barrier before use PACKAGING Solid Dose – Blister Packs Film – e.g. PVC, PVC/PVDC Product contact layers: For PVC = PVC For PVC/PVDC = PVDC For Lid foil = heat seal lacquer PACKAGING Injections:  Vials Glass – type I Plastic – e.g. LDPE Glass Plastic Syringe Rubber Vial Glass - type I Plastics - PP, PC, COC Stopper Rubber Ampoules Glass – type I Plastic – PP, COC Rubber, plastic RUBBER Butyl, chlorobutyl, bromobutyl, halobutyl, TPE ,natural*, buytl/polyisoprene* copolymer or blend; Coatings – Flurotech, Omniflex, fluororesin/polymer * Beware of concern over latex allergy. Need for warning labelling EU & US PACKAGING Injections Slide23:  PACKAGING Tubes Aluminium Lacquered Aluminium lined with an epoxy phenolic lacquer Laminate foil laminate body, plastic shoulder Eg, structure for Acyclovir topical ointment Plastic – PE, PVC NOTE: Specific EU Directives limiting residues in epoxy coatings for food contact use Slide24:  Metered dose inhaler Nebules PACKAGING Inhalation and Intranasal Products Dry Powder Inhalers Intranasal Slide25:  PACKAGING Key Regulatory Guidance - US Guidance for Industry, Container Closure Systems for Packaging of Human Drugs and Biologics Guidance for Industry, Changes to an Approved NDA or ANDA Slide26:  PACKAGING Key Regulatory Guidance - EUROPE CPMP/QWP/4359/03 – Guideline on Plastic Immediate Packaging Materials - specific to plastics only Guideline on Dossier Requirements for Type 1A and Type 1B Notifications KEY POINT TO NOTE EU does NOT have a consolidated container/closure guideline (cf FDA) Slide27:  Regulatory requirement FDA Container Closure Systems for Packaging of Human Drugs and Biologics, Chemistry, Manufacturing and Controls Documentation, III,B,I,c Safety Nasal Spray and Inhalation Solution, Suspension, and Spray Drug Products, Manufacturing and Controls Documentation, III,G,1. Metered Dose Inhaler (MDI) and Dry Powder Inhaler (DPI) Drug Products Chemistry, Manufacturing, and Controls Documentation, III,G,a CPMP CPMP Note for Guidance III/9090/EN (3AQ10a) Plastic Primary Packaging Materials, Introduction CPMP Note for Guidance CPMP/QWP/4359, Plastic Immediate Packaging Materials (effective 1 December 2005) PACKAGING Food Contact Approval Slide28:  Baseline Statement of Safety Defines acceptable starting materials acceptable additives and processing aids limits on residues limits on leachables (eg specific migration limits) Based upon Acceptable or Tolerable Daily Intake in FOOD NOTE US and EU do not use same calculations PACKAGING Food Contact Approval - Relevance EXTRACTABLES and LEACHING THE THEORY :  EXTRACTABLES and LEACHING THE THEORY FDA guidelines make significant reference Included in CPMP guideline 3AQ10a and CPMP/QWP/4359 Pack/product interaction Label adhesive migration But no guidance tells you exactly what to do or how to do it Slide30:  REGULATORY EXPECTATION Identify Quantify Toxicological evaluation GOOD SCIENCE Qualification exhaustive extraction to characterise (worst case) qualitative and quantitative chromatographic profiles show control at the material level (cf. synthetic impurities) Stability monitoring in real product, real time to establish equilibrium concentration value Interaction early detection Avoids unnecessary stability testing If interaction is between the active and a pack extractive, resultant compound is treated as an impurity (ICH Q3B) PACKAGING Extractables & Leachables Expectation & Science Packaging Development:  Packaging Development Objective To ensure timely and robust selection of the primary pack for clinical trial and commercial supply. Our approach: To use, where possible, a limited range of standard, well characterised pack materials and packs To ensure thorough testing, characterisation and understanding of our pack materials and packs. Phase I – FTIH & Phase II Clinical Supply:  Phase I – FTIH & Phase II Clinical Supply Objective Selection of packs for clinical supply Our approach: Will generally use Limited range of standard, characterised packs, eg, HDPE bottles for sold dose forms Inert packs, eg, fluororesin laminated injection stoppers Packs and materials chosen to ensure pharmacopoeial and regulatory compliance is well understood Material performance is well characterised or known Pack selection is supported by stability testing for each product Phase II – III, Commercial Pack Development:  Phase II – III, Commercial Pack Development Objective Identification, development and testing of commercial pack options Approach: 3. Development Stability Testing 2. Material Selection & Testing 1. Identify Pack Options 6. Pivotal Stability Testing 5. Pack Selection 4. Controls Defined Slide34:  Pack options are identified to meet: Product attributes, e.g., dosage form, physical and chemical robustness Product protection needs, e.g., moisture & gas sensitivity, thermal stability, photostability, chemical compatibility etc Clinical requirements, e.g., dosing regimen, titration dosing, route of administration, need for dosing device Patient requirements, e.g., specific handling requirements, patient handling studies Commercial requirements, e.g., market presentation, pack sizes, market specific needs, patient handling needs Manufacturing requirements, e.g., equipment capability, critical process parameters, Regulatory requirements, e.g., material compliance, pharmacopeial monographs 1. Identify Pack Options Slide35:  Product contact materials chosen to meet global and local regulations. Product contact materials, particularly, plastics confirmed as compliant with relevant food contact regulations, e.g. US, EU etc Pharmacopoeial compliance established, e.g. USP, Ph Eur, JP Performance testing conducted, e.g., moisture permeation, light transmission Chemical characterisation, e.g., extractables and leachables studies, especially for parenteral, ophthalmic and inhalation products Toxicological assessment of extractables and leachables conducted We maximise our pack and product knowledge and understanding and achieve commercial efficiency by using a limited range of First Intent, preferred pack materials, wherever possible. 2. Material Selection & Testing Slide36:  Development stability testing used to Understand and explore stability in selected pack option Predict long term stability Confirm product protection or need for more protective packs, eg, need for Inclusion of desiccants for moisture protection Higher barrier blister films or need for foil/foil blisters protective overwrap Confirm compatibility Identify and explore pack/product interaction These are key data used to make a final pack selection. 3. Development Stability Testing Slide37:  Data from material and product testing used to identify critical quality and process attributes for pack and packaging process, e.g.: Need for RH controls during packing Need to inert gassing of pack headspace Seal integrity testing Need for extractables testing as a routine control Manufacturing controls/specifications for the pack components and suppliers, eg, dimensional and performance specifications, need for clean room manufacture etc Manufacturing controls for the packaging process 4. Controls Defined Slide38:  Data from the previous steps, together with the clinical, patient, commercial and manufacturing requirements, are used to identify and agree the intended market packs. Pivotal stability testing conducted in the selected markets packs, to Confirm compatibility and product stability Support product registration submission 5. Pack Selection 6. Pivotal Stability Testing Phase 3 - Launch:  Phase 3 - Launch Between Phase 3 and Launch Secondary packaging is defined note, if needed for product protection, this will be defined with the primary pack and included in pivotal stability Define market presentations, graphics, patient information leaflets Conduct line, engineering and technical trials on pack components and equipment Conduct any necessary validation of packaging processes Pack Changes? :  Pack Changes? Our aim: to avoid pack changes between pivotal stability and launch by ensuring a quality by design approach to pack selection and understanding of product stability and packaging But changes can occur at late stage due to, for example, Unpredictable outcome in pivotal stability Newly identified impurities or need for tighter specification limits These tend to drive need for more protective packs, e.g. Inclusion of desiccant in bottle packs Need for higher barier (eg foil/foil) blister packs By use of First Intent pack materials and packs, we aim to have a thorough understanding of our materials to minimise impact of change and have readily available, well characterised pack options.

Related presentations


Other presentations created by Sigfrid

Diabetes Mellitus
29. 02. 2008
0 views

Diabetes Mellitus

bus108 pp 08spr
08. 05. 2008
0 views

bus108 pp 08spr

Ch01
07. 05. 2008
0 views

Ch01

Steenburgh
02. 05. 2008
0 views

Steenburgh

107249 firstfileFILE
02. 05. 2008
0 views

107249 firstfileFILE

Regional Roadshows generic
30. 04. 2008
0 views

Regional Roadshows generic

PE3 U2 R
24. 04. 2008
0 views

PE3 U2 R

Hydrogen Workshop
22. 04. 2008
0 views

Hydrogen Workshop

GW052307MS3Rv3Final
21. 04. 2008
0 views

GW052307MS3Rv3Final

0329
18. 04. 2008
0 views

0329

3 Johnson BMGs
10. 01. 2008
0 views

3 Johnson BMGs

HIV AIDS PM
12. 01. 2008
0 views

HIV AIDS PM

PM Insv01
12. 01. 2008
0 views

PM Insv01

ISECON 2006 Sharp
13. 01. 2008
0 views

ISECON 2006 Sharp

Asthma 10 02
14. 01. 2008
0 views

Asthma 10 02

Panda life
15. 01. 2008
0 views

Panda life

Extinction
15. 01. 2008
0 views

Extinction

Empirical Formula
16. 01. 2008
0 views

Empirical Formula

Earth Resources
16. 01. 2008
0 views

Earth Resources

religion 1
17. 01. 2008
0 views

religion 1

020607 AmbassadorBriefing
21. 01. 2008
0 views

020607 AmbassadorBriefing

Christmas Sing along
15. 01. 2008
0 views

Christmas Sing along

Courseintro
04. 02. 2008
0 views

Courseintro

FAQ Presentation
24. 01. 2008
0 views

FAQ Presentation

CMS update
12. 02. 2008
0 views

CMS update

Brian Steele
28. 01. 2008
0 views

Brian Steele

crypto f05 s2
29. 01. 2008
0 views

crypto f05 s2

writing varner
06. 02. 2008
0 views

writing varner

The Maya
07. 02. 2008
0 views

The Maya

Fichner Rathus CH12
12. 02. 2008
0 views

Fichner Rathus CH12

bristol
14. 02. 2008
0 views

bristol

pps 310
14. 02. 2008
0 views

pps 310

LCR02
15. 02. 2008
0 views

LCR02

burton RESTEasy
21. 02. 2008
0 views

burton RESTEasy

Glaucoma
25. 02. 2008
0 views

Glaucoma

festival on a budget
27. 02. 2008
0 views

festival on a budget

Projection Systems Ortho and Iso
09. 01. 2008
0 views

Projection Systems Ortho and Iso

Slide Presentation
28. 02. 2008
0 views

Slide Presentation

Age Of Enlightenment
03. 03. 2008
0 views

Age Of Enlightenment

JobPostings
11. 03. 2008
0 views

JobPostings

ESCI101 26 Groundwater1
12. 03. 2008
0 views

ESCI101 26 Groundwater1

79 3843 6 1950s Powerpoint
19. 03. 2008
0 views

79 3843 6 1950s Powerpoint

Operating Systems ofthe Home
10. 01. 2008
0 views

Operating Systems ofthe Home

climate transport brazil
25. 03. 2008
0 views

climate transport brazil

garetiree
07. 02. 2008
0 views

garetiree

LUENTO3Embryo development
10. 03. 2008
0 views

LUENTO3Embryo development

Woolly Monkey Research
31. 03. 2008
0 views

Woolly Monkey Research

nixonforeignpolicy JoshR BenK
03. 04. 2008
0 views

nixonforeignpolicy JoshR BenK

bahai
07. 04. 2008
0 views

bahai

Chapter 13 Global Clim
27. 03. 2008
0 views

Chapter 13 Global Clim

nach31d fuzeon vortr
28. 03. 2008
0 views

nach31d fuzeon vortr

d04 vp matousek
15. 04. 2008
0 views

d04 vp matousek

red binder pages
14. 04. 2008
0 views

red binder pages

KULDA Training 0405
23. 01. 2008
0 views

KULDA Training 0405

3 eReturn to work
29. 01. 2008
0 views

3 eReturn to work

slides trouble with tanning beds
04. 02. 2008
0 views

slides trouble with tanning beds

faith based focus group
13. 01. 2008
0 views

faith based focus group

pogorelova
14. 02. 2008
0 views

pogorelova

2 Trevor
16. 01. 2008
0 views

2 Trevor

goldstein 6th c7 editedW06
14. 01. 2008
0 views

goldstein 6th c7 editedW06

scenarios candice
28. 01. 2008
0 views

scenarios candice

histrespr2007
28. 01. 2008
0 views

histrespr2007

MontrealEngineering5 5 03
25. 01. 2008
0 views

MontrealEngineering5 5 03

ithaca presentation
17. 01. 2008
0 views

ithaca presentation

rapport medarbetarenkat 06
07. 02. 2008
0 views

rapport medarbetarenkat 06

2hmr theme1
15. 01. 2008
0 views

2hmr theme1

almy ieee
11. 01. 2008
0 views

almy ieee

DAMM Presentation Businet
13. 01. 2008
0 views

DAMM Presentation Businet

odrecva
05. 02. 2008
0 views

odrecva

Lecture4metabolism
23. 01. 2008
0 views

Lecture4metabolism

20060608 NAT2006
20. 02. 2008
0 views

20060608 NAT2006

Amarger Hitachi
08. 04. 2008
0 views

Amarger Hitachi

ERMSAR COMET S2 5
16. 01. 2008
0 views

ERMSAR COMET S2 5

Tim Riedel
24. 01. 2008
0 views

Tim Riedel

jmajor022206
11. 02. 2008
0 views

jmajor022206