Process Algebra as Modelling

Information about Process Algebra as Modelling

Published on June 18, 2007

Author: Woofer

Source: authorstream.com

Content

Process Algebra as Modelling:  Process Algebra as Modelling Chris Tofts HPLB, August 2005 Some wider thoughts:  Some wider thoughts And after 7.5 Million years:  And after 7.5 Million years Key Problems:  Key Problems How do you verify simulations – especially Markov based ones? Can you get negative results from a simulation? Can you treat mathematics like different processor architectures? How do you get decision makers to believe the results of models? All the problems I’ve had process algebra with…:  All the problems I’ve had process algebra with… Or all the problems I’ve had with process algebra Just as a list:  Just as a list Ant activity synchronisation Task allocation in ants, bees and naked mole rats Brood sorting in Ants Path finding in ants Effects of vertical parasites on population extinction Vertical parasite within host transmission Parasite mediated meta population dynamics Foster’s bottling plant in Birmingham Semantics of Demos – generic discrete event simulator Correctness of NUMA memory control Spawning Systems Concurrent queue control Correctness of asynchronous hardware Timing behaviour of asynchronous hardware Probabilistic performance of asynchronous hardware Evolution of sex Channel allocation in mobile phones Modelling bursty/autosynchronised traffic Desynchronisation in parallel pipelines Efficient modelling of resource Reductionism vs functional For some selected models:  For some selected models How the model works How big the systems were What the models predicted/demonstrated What I learnt from doing it Any future work Task Allocation:  Task Allocation The model:  The model Tasks are arranged in order – consequence of the physical nature of the colony situation If you do not find sufficient work for some number of ‘turns’ then consider moving If moving move up or down a task with a certain probabilities – may not necessarily be symmetric ‘please don’t make me forage’ Results:  Results If there is an optimum arrangement of the animals with respect to the tasks then this will eventually be reached. Observations:  Observations Can include animals with specialised ‘morphs’ – they are either only willing to perform one task, and grab the work their with higher priority than task mates, or move towards favoured task with high probability when given excuse. Can model dynamics of task, consider placing all animals as correct solution to different task allocation problem, see how long stability takes to arise. Can build really small simulation on top of proved results and use it to do further arithmetic such as tracking age. What I learnt:  What I learnt Power of Markov chain decomposition theorem Cannot get the data to support further modelling Get really small simulation which can be compared with theorem – only used for arithmetic not for fundamental property checking Don’t mess with genetic determinists Upsets Aristotle What happened afterwards:  What happened afterwards The ‘foraging for work’ task allocation method often described as controversial – used as experimental design example in biology Many experiments trying to compare it with ‘old’ hypotheses Path Finding in Vertical Parasites:  Path Finding in Vertical Parasites The model:  The model Parasite moves into daughter cells when cells split Parasite ‘tracks’ gonadal tissue with probability p Parasite breeds by duplication at a rate relative to the host cell division rate Once in a cell the parasite cannot move between cells Results:  Results Particular distribution for parasite load in cells of embryo Demonstrated that parasites about 70% ‘good’ at tracking pre-gonadal tissue Possible explanation for less than 100% transmission effectiveness of vertical parasites Early within host cell level model of disease process What I learnt:  What I learnt Close relationship of particular class of probabilistic processes to branching processes Clarity of presentation of process algebra Just how much pain can be inflicted on a biology PhD student Further work:  Further work Closely related to work on ‘male exhaustion Leading to meta population analysis of local extinction caused by parasitism Possible explanation of co-evolutionary stability Evolution of Sex:  Evolution of Sex The model:  The model Multiple factors on a chromosone Outcome determined by probabilistic function on count Count Outcome Definitely male Definitely female 50/50 Results:  Results 3 Solutions C,C X,Y X,X Z,Z Z,W L,L L,H H,H Type 1 Type 2 Type 2 Type 3 Results(2):  Results(2) Some species of turtle show limit of about 87% ESD – just where the total lies in Type 3 What I learnt:  What I learnt Need to be careful about closed states – the actual closed state here is no animals Need to be careful applying Hardy-Weinberg Can take a very long time to run the sims to cross check the maths Simulo state space 2000 animals 2*20 factors each, so raw state space of k*(20)^2000 Further work:  Further work When distributed over multiple chromosones get 1 new really weird type – but looks(;-)) very delicate hard to reach Interaction with cross over rate Way too weird for biologists not height When done against probabilistic function get types 1 and 3 only but lets look at evidence for XY and ZW, often based on 2 animals… Problems + My Gain:  Problems + My Gain Problems + My Gain:  Problems + My Gain Correctness of asynchronous hardware Timing behaviour of asynchronous hardware Probabilistic performance of asynchronous hardware Evolution of sex Desynchronisation in parallel pipelines Efficient modelling of resource Process Algebras Achievements:  Process Algebras Achievements Composition Composition Composition (or is this just algebra?) Very small notation for very large problems – even though I didn’t show it, none of these problems run to much more than a page Actually copes with non-computational concurrent systems More different calculi than string theory Fixed ratio of calculi to calculations during researchers lifetime Acknowledgements:  Acknowledgements Mel Hatcher, Graham Birtwistle, Faron Moller, Alison Dunn, Nigel Franks, Tim Stickland, Anna Sendova-Franks, Matthew Morely, Athena Christodoulou, Steve Furber, Doug Edwards, James Dyer, Richard Taylor, Rebecca Terry, Don Goodeve, Dale Tanneyhill, David Pym, Jamie Dick, numerous 3rd year Biology project students Slide29: 

Related presentations


Other presentations created by Woofer

Power Point Basics
19. 06. 2007
0 views

Power Point Basics

Intro to Latin America
03. 10. 2007
0 views

Intro to Latin America

Currall Energy Nano
01. 10. 2007
0 views

Currall Energy Nano

Welcome to the Aztecs
01. 11. 2007
0 views

Welcome to the Aztecs

halloween safety tips
02. 11. 2007
0 views

halloween safety tips

us army vehicle identific
07. 11. 2007
0 views

us army vehicle identific

Ebbes Personalisierung
16. 11. 2007
0 views

Ebbes Personalisierung

Lecture 17
22. 11. 2007
0 views

Lecture 17

Chiasson0306 4
30. 12. 2007
0 views

Chiasson0306 4

The Chemistry of Life
02. 01. 2008
0 views

The Chemistry of Life

ShortageofGirlsinChi na
12. 10. 2007
0 views

ShortageofGirlsinChi na

Masis
22. 10. 2007
0 views

Masis

AEP3 PPT Generic
27. 11. 2007
0 views

AEP3 PPT Generic

mod3 lecture 5b
05. 10. 2007
0 views

mod3 lecture 5b

vesseltracking
22. 10. 2007
0 views

vesseltracking

carynong
04. 10. 2007
0 views

carynong

svt formules sponsor
23. 10. 2007
0 views

svt formules sponsor

911 sp
26. 02. 2008
0 views

911 sp

Ballistics
28. 02. 2008
0 views

Ballistics

Gosnold IASPEI
22. 10. 2007
0 views

Gosnold IASPEI

Eco driving 4web
21. 03. 2008
0 views

Eco driving 4web

TerraCottaWarriors SDaly
26. 03. 2008
0 views

TerraCottaWarriors SDaly

2nd session6
27. 03. 2008
0 views

2nd session6

15 Man on the Moon
07. 04. 2008
0 views

15 Man on the Moon

switchroute1
01. 01. 2008
0 views

switchroute1

Nijenrode230507
28. 03. 2008
0 views

Nijenrode230507

2004intl USC Kumar
30. 03. 2008
0 views

2004intl USC Kumar

ernest adams
11. 12. 2007
0 views

ernest adams

5 Project01 04
04. 03. 2008
0 views

5 Project01 04

RoxanaBojariu
09. 04. 2008
0 views

RoxanaBojariu

frontline
10. 04. 2008
0 views

frontline

Mexico HOME BUIDERS ingles 8feb
13. 04. 2008
0 views

Mexico HOME BUIDERS ingles 8feb

Flowers lab
14. 12. 2007
0 views

Flowers lab

David Smith 20061102
14. 04. 2008
0 views

David Smith 20061102

AML Business Requirements neut
17. 04. 2008
0 views

AML Business Requirements neut

Preparing the Way Power Point
18. 06. 2007
0 views

Preparing the Way Power Point

prelims 2005
19. 06. 2007
0 views

prelims 2005

PORTS
19. 06. 2007
0 views

PORTS

Perkins IV Workshop 2007 draft 2
19. 06. 2007
0 views

Perkins IV Workshop 2007 draft 2

pascal
19. 06. 2007
0 views

pascal

Open House Presentation0412
19. 06. 2007
0 views

Open House Presentation0412

Presentation Rvbg
18. 06. 2007
0 views

Presentation Rvbg

Presentation MA 02
18. 06. 2007
0 views

Presentation MA 02

prospectus mta nespl
18. 06. 2007
0 views

prospectus mta nespl

orientation 2006
19. 06. 2007
0 views

orientation 2006

ç04çDNSèä
23. 10. 2007
0 views

ç04çDNSèä

U9B2
24. 02. 2008
0 views

U9B2

Presentazione CorsoE
18. 06. 2007
0 views

Presentazione CorsoE

Presentazione CorsoA
18. 06. 2007
0 views

Presentazione CorsoA

Filatova
11. 10. 2007
0 views

Filatova

lemonade 0
29. 10. 2007
0 views

lemonade 0

MTScrapbook1
26. 07. 2007
0 views

MTScrapbook1

pb
19. 06. 2007
0 views

pb

Gut Feeling Mikels RIP
06. 08. 2007
0 views

Gut Feeling Mikels RIP

slides na3
27. 09. 2007
0 views

slides na3

Special Areas of Conservation
28. 12. 2007
0 views

Special Areas of Conservation

Braulio2
22. 10. 2007
0 views

Braulio2

Open House Pix
19. 06. 2007
0 views

Open House Pix

Legnaro Variola
04. 01. 2008
0 views

Legnaro Variola

PNUD SNU Agenda Nacional
19. 06. 2007
0 views

PNUD SNU Agenda Nacional

Plan Empleados SAGARPA
14. 11. 2007
0 views

Plan Empleados SAGARPA