Retroviruses105

Information about Retroviruses105

Published on October 15, 2007

Author: Abhil

Source: authorstream.com

Content

Slide1:  • The Retroviridae are a family of enveloped (+) sense ssRNA viruses that have been intensely studied because of their association with cancers, leukemias and the AIDS syndrome • The first association of viruses with cancer was in early 1900’s with the discovery by Ellerman and Bang that leukemia could be transmitted from one chicken to another by injecting leukemia cell extracts • In 1911 Peyton Rous showed that a bacterial free filtrate from solid tumors of chickens could cause an identical cancer in chickens inoculated with the filtrate • The virus causing the leukemia was subsequently shown to be avian leukosis virus and the virus causing tumors was designated Rous sarcoma virus Retroviridae Slide2:  • Although the discoveries by Ellerman, Bang and Rous were not well accepted at the time, 60 years later these viruses were designated retroviruses and Rous won the Nobel Prize for his work in 1963 at the age of 83 • In early 1970, Baltimore and Temin independently identified the unusual enzyme, reverse transcriptase and won the Nobel Prize in 1975 for their work • Their discovery shattered the central dogma of molecular biology which stated the flow of genetic information was from DNA to RNA • In 1989, Bishop and Varmus won the Nobel Prize for elucidating that retroviral oncogenes are derived from cellular genes and brought us closer to understanding cancer Retroviridae History:  History Vallee and Carre (1904) - Filterable virus is cause of “Swamp Fever” of horses (EIAV) Ellerman and Bang (1908) - chicken leukemia transferred by bacteria-free filtrate (virus) Rouse (1911) - Rous sarcoma in chicken (RSV) Work in chicken and mice 1930s - 1970s: RNA tumor viruses Temin (1962) - Hypothesized “Provirus state” Huebner and Todaro (1969) - the “Viral Oncogene Hypothesis” Temin and Baltimore (1970) - discovery of Reverse Transcriptase Bishop and Varmus (1978) - oncogenes are derived from cellular genes involved in growth (src product is cellular phosphokinase) Gallo (1981) - human retrovirus (HTLV-Human T Cell Leukemia Virus) Barre-Sinoussi (1983) - HIV isolated / shown to be the cause of AIDS Retroviridae:  Retroviridae Retroviruses (family Retroviridae) are enveloped, single stranded (+) RNA viruses that replicate through a DNA intermediate using reverse transcriptase. This large and diverse family includes members that are oncogenic, are associated with a variety of immune system disorders, and cause degenerative and neurological syndromes. Retrovirus Classification Derivation of Names:  Retrovirus Classification Derivation of Names Retro (Latin) - backwards Onco (Greek, oncos) - tumor Spuma (Latin)-foam Lenti (Latin, lentus) - slow Retrovirus Classification Family: Retroviridae:  Retrovirus Classification Family: Retroviridae Retrovirus Virions Thin Section EM of Some Retroviruses:  Retrovirus Virions Thin Section EM of Some Retroviruses Type A (donut) Type B (eccentric) MMTV Type C (central) ALV,RSV Type D (bar) Lentivirus (cone) HIV Slide8:  Retrovirus structure • Retrovirus virions are 80-120 nm in diameter, have spherical morphology, a phospholipid envelope with knobs • Contain around 2000 molecules of nucleocapsid (NC) protein that bind to the two copies of (+) strand RNA genome •Retroviral ribonucleoproteins are encased within a protein shell built from the capsid protein to form an internal core, which can have different shapes and has a conical shape in HIV Slide9:  Rous sarcoma virus Avian leukosis virus Retroviruses are enveloped, and contain: two copies of RNA; internal structural proteins (MA,CA,NC); enzymes (PR,RT,IN); and exterior proteins (SU,TM). There are several different complex morphological types. ” Slide10:  surface transmembrane matrix protein capsid protein nucleocapsid protein RT Integrase protease HIV Structure Slide11:  Cryoelectron micrograph of mature human immunodeficiency virus type 1 (HIV-1) showing the elongated internal cores HIV Virions Slide12:  • Single standed (+) sense RNA genome of about 10 kb 5’ cap, 3’ poly(A) tail Stop codon between gag and pol, suppressed by readthrough or frameshifting Looks like mRNA, but does not serve as mRNA immediately after infection Has a direct repeat (R) and unique (U) regions at both ends All retroviruses encode Gag, Pol and Env • Lentiviral genomes encode a number of additional auxiliary proteins, Tat, Rev, Nef, Vif, Vpr and Vpu HIV genome organization Slide13:  HIV integration: Genome of Simple vs. Complex Retroviruses:  Genome of Simple vs. Complex Retroviruses ALV and MLV are “Simple” retroviruses HTLV, HIV, HFV, and WDSV are “Complex” retroviruses that contain accessory genes Notice gag-pol-env in both simple and complex Slide15:  Genome of Simple vs. Complex Retroviruses Retroviral Proteins:  Retroviral Proteins gag, pol, and env Gag protein proteolytically processed into MA (matrix) CA (capsid) NC (nucleocapsid) Pol protein encodes enzymes PR (protease) RT (Reverse Transcriptase which has both DNA polymerase and RNase H activities) IN (Integrase) Env protein encodes SU surface glycoprotein TM transmembrane protein “Accessory” genes (in Complex Retroviruses) - regulate and coordinate virus expression; function in immune escape Oncogene products (v-Onc, in Acutely Transforming Retroviruses) - produce transformed phenotype Gag Proteins:  Gag Proteins MA, Matrix, p17 CA, Capsid, p24 NC, Nucleocapsid, p7 Binds to RNA Zinc fingers Note: retroviral proteins are sometimes designated by their apparent molecular weight. This varies from virus to virus Enzymatic Proteins: Protease:  Enzymatic Proteins: Protease 10 kd, dimer Cuts Gag polyprotein to MA,CA,NC Aspartyl protease Exquisite cleavage specificity Major class of anti-HIV drugs are Protease Inhibitors Enzymatic Proteins: Reverse Transcriptase:  Enzymatic Proteins: Reverse Transcriptase DNA Polymerase Activity Requires primer with 3’ OH termination Template either RNA or DNA Requires Mg++ (or Mn++) Lacks proof-reading function; high error rate (10-4 errors per base) RNase H Activity (Nuclease specific for RNA in RNA:DNA hybrids) Activity encoded in different domain than polymerase Enzymatic Proteins: Integrase:  Enzymatic Proteins: Integrase Integrates retroviral DNA into host genome Endonuclease activity Drugs being developed Env Proteins: Transmembrane (TM):  Env Proteins: Transmembrane (TM) Holds SU to retroviral envelope Involved in membrane fusion/penetration of virus into cell Env Proteins: Surface (SU):  Env Proteins: Surface (SU) Glycoprotein (gp, followed by apparent molecular weight) Attaches to a specific receptor on cell surface Major neutralizing antigen on retrovirus, also often highly variable (EIAV, HIV). Hard to make vaccines. SU (gp120) TM (gp 41) Lipid Bilayer (derived from cell) Slide23:  • HIV LTR functions as a promoter in a variety of cell types in vitro • It includes an enhancer sequence that binds a number of cell type specific transcription activators Regulatory proteins: Tat Slide24:  • Downstream of the site of initiation of transcription is the TAR RNA sequence which forms a stem loop that binds the 14 kd viral regulatory protein Tat • In the absence of Tat, viral transcription terminates prematurely • Tat facilitates efficient elongation • Tat protein is cytotoxic to cells in culture • Causes depolarization and degeneration of cell membranes • Transgenic expression in mice causes a disease that resembles Kaposi’s sarcoma Mechanism of Tat activation Slide25:  Stimulation of transcription by HIV-1 Tat protein: • Before Tat is made proviral transcripts are terminated within 60 bp of the initiation site • Production of the Tat protein allows transcription complexes to synthesize full length RNA • Binding of Tat to TAR together with the cyclin T subunit of Tak leads to stimulation of phosphorylation of the largest subunit of RNA polymerase II • As a result, the transcriptional complexes become competent to carry out transcription Slide26:  • Rev Protein is an RNA binding protein that recognizes a specific sequence within the structural element in env called the Rev-responsive element (RRE) Regulatory proteins: Rev Slide27:  • Rev activates the nuclear export of any RRE containing RNA • As the Rev concentration increases, unspliced or singly spliced transcripts containing the RRE are exported from the nucleus • Rev facilitates synthesis of the viral structural proteins and enzymes and ensures availability of full length genomic RNA to be incorporated into new virus particles • The accessory proteins, Vif, Vpr and Vpu are also expressed later in infection from singly spliced mRNAs and their export to the cytoplasm is Rev dependent Rev protein: Slide28:  Nef protein: • Translated from multiply spliced early transcripts • myristylated at its N-terminus and anchored to the inner surface of the plasma membrane • Nef deleted HIV and SIV are much less pathogenic in vivo • Nef downregulates expression of CD4 by enhancing endocytosis • Can activate CD4+ T lymphocytes by modulating signaling pathways HIV accessory proteins Slide29:  Vif Protein: • Viral infectivity factor • Accumulates in the cytoplasm and at the plasma membrane of infected cells • Mutant viruses lacking the vif gene were less infectious and defective in some way • vif-defective virions enter cells, initiate reverse transcription, but do not produce full-length double stranded DNA • vif inhibits antiviral action of a cytidine deaminase, which is synthesized in nonpermissive cells This enzyme deaminates deoxycytidine to deoxyuridine and leads to endonucleolytic digestion or G to A transitions HIV accessory proteins Slide30:  Attachment of the virion to a specific cell surface receptor Penetration of the virion core into the cell Reverse transcription within the core structure to copy the genome RNA into DNA Transit of the DNA to the nucleus Integration of the viral DNA into random sites in cellular DNA to form the provirus Synthesis of viral RNA by cellular RNA polymerase II using the integrated provirus as a template Processing of the transcripts to genome and mRNAs Synthesis of virion proteins Assembly and budding of virions Proteolytic processing of capsid proteins Retrovirus replication cycle Slide31:  Retrovirus life cycle: Slide32:  •The gp120 has a specific domain that binds to the CD4 molecule present on susceptible cells •Upon binding to CD4, the gp120 undergoes a conformational change that allows binding to specific subset of chemokine receptors on the cell surface, the CCr5 receptor and the CXCr4 receptor HIV binding and entry Slide33:  Coreceptors for macrophage and T-cell-tropic Strains of HIV CXCr4 is the major coreceptor for T-cell-tropic strains CCr5 is the major coreceptor for macrophage-tropic strains Slide34:  • The use of each coreceptor corresponds to viruses with different biological properties and pathogenicity. • Viruses isolated at the beginning of infection use the CCr5 co-receptor, which is the major coreceptor for macrophage-tropic strains, these viruses are not cytophatic • In full-blown AIDS cases, new viral species appear with high level of replication, cytophatic effects and they use the coreceptor CXCr4, which is the major receptor for T-cell tropic strains • There are also dual tropic viruses that can use both CXCr4 and CCr5 coreceptors or alternative chemokine coreceptors • The fusion between the viral membrane and the cellular membrane involves a change in conformation of gp41, which enables it to insert into the cellular phospholipid bilayer HIV binding and entry Slide35:  •Retroviruses contain two copies of the RNA genome held together by multiple regions of base pairing • This RNA complex also includes two molecules of a specific cellular RNA (tRNAlys) that serves as a primer for the initiation of reverse transcription • The primer tRNA is partially unwound and hydrogen bonded near the 5’ end of each RNA genome in a region called the primer binding site Retroviral genome Slide36:  1) (-) strand synthesis starts near the 5’ end of the (+) strand RNA genome with a specific host tRNA as a primer and runs out of template after ~100 nt 2) Synthesis proceeds to the 5’ end of the RNA genome through the u5 region ending after the r region, forming the (-) strand strong stop DNA (-ssDNA) Reverse transcription Slide37:  2) RNA portion of the RNA-DNA hybrid is digested by the RNase H activity of RT, resulting in a single-stranded DNA product 3) This facilitates hybridization with the r region at the 3’ end of the same or second RNA genome, resulting in the first template exchange for RT Reverse transcription cont. Slide38:  4) (-) strand DNA terminates at the primer binding site 5) When (-) strand elongation passes the polypurine tract (ppt) region, the RNA template escapes digestion by RNase H and serves as a primer for (+) strand synthesis by DNA dependent DNA polymerization (DDDP) Reverse transcription cont. Slide39:  6) (+) strand synthesis then continues back to the U5 region with the (-) strand DNA as the template and terminates after copying the first 18 nt of the primer tRNA and stops, forming the (+) strand strong stop product (+ssDNA) Reverse transcription cont. Slide40:  7) The tRNA is then removed by RNase H activity of RT 8) The exposed PBS anneals to the PBS sequence at the 3’ end of the (-) strand DNA, allowing the second template exchange. Product of the second template exchange is a circular DNA molecule with overlapping 5’ ends. Reverse transcription cont. Slide41:  9) DNA synthesis is terminated at the breaks in the template strands at the PBS and PPT ends, producing a linear molecule with long terminal repeats (LTRs). Reverse transcription cont.

Related presentations


Other presentations created by Abhil

oyster culture
03. 01. 2008
0 views

oyster culture

laser
02. 05. 2008
0 views

laser

electricity project
10. 10. 2007
0 views

electricity project

CAPM Nt
28. 04. 2008
0 views

CAPM Nt

futures
16. 04. 2008
0 views

futures

601presentation
29. 09. 2007
0 views

601presentation

RJ Iris Equity Seminar
03. 10. 2007
0 views

RJ Iris Equity Seminar

bubbles
03. 10. 2007
0 views

bubbles

weather jeopardy spanish
07. 10. 2007
0 views

weather jeopardy spanish

pc03
09. 10. 2007
0 views

pc03

IVACS2006 handout
09. 10. 2007
0 views

IVACS2006 handout

06 collaborating to improve ell
10. 10. 2007
0 views

06 collaborating to improve ell

lj
13. 10. 2007
0 views

lj

4bTheNobelPrizeinChe mistry2004
15. 10. 2007
0 views

4bTheNobelPrizeinChe mistry2004

Lecture 1 Darwin vs God
15. 10. 2007
0 views

Lecture 1 Darwin vs God

NCMA Presentation
22. 10. 2007
0 views

NCMA Presentation

endangeredspecies ppt
12. 10. 2007
0 views

endangeredspecies ppt

mtom
24. 10. 2007
0 views

mtom

scaling
19. 10. 2007
0 views

scaling

p10
23. 10. 2007
0 views

p10

2007 Applicant Demographics
30. 10. 2007
0 views

2007 Applicant Demographics

WNV
21. 10. 2007
0 views

WNV

cells
20. 11. 2007
0 views

cells

conclusiones V1 sep28 2007
25. 10. 2007
0 views

conclusiones V1 sep28 2007

ap Cold War 07
23. 12. 2007
0 views

ap Cold War 07

10 Review
29. 12. 2007
0 views

10 Review

Isle Royale Simulation
01. 01. 2008
0 views

Isle Royale Simulation

structengr
04. 01. 2008
0 views

structengr

2005 02 07 Could Al Qaeda Win
07. 01. 2008
0 views

2005 02 07 Could Al Qaeda Win

td06030
15. 10. 2007
0 views

td06030

I DESC Japan
09. 10. 2007
0 views

I DESC Japan

section5 lec2
13. 11. 2007
0 views

section5 lec2

205w
03. 01. 2008
0 views

205w

Ceiling Fan Sales Training
23. 10. 2007
0 views

Ceiling Fan Sales Training

v war stuntman
19. 02. 2008
0 views

v war stuntman

HIMARS ENGLISHLANGUAGE
04. 03. 2008
0 views

HIMARS ENGLISHLANGUAGE

ING NYC Marathon 2007
12. 03. 2008
0 views

ING NYC Marathon 2007

K ICMCI as an NGO
20. 03. 2008
0 views

K ICMCI as an NGO

CPB750 TXT
03. 04. 2008
0 views

CPB750 TXT

Unit 4 Japan s Geography 1
07. 04. 2008
0 views

Unit 4 Japan s Geography 1

neither shall the sword
27. 02. 2008
0 views

neither shall the sword

solka fml 4 15 06 dj final
15. 11. 2007
0 views

solka fml 4 15 06 dj final

coface07
13. 04. 2008
0 views

coface07

AMurcko
17. 04. 2008
0 views

AMurcko

FACS borenstein Dec03
22. 04. 2008
0 views

FACS borenstein Dec03

mhtb
07. 11. 2007
0 views

mhtb

ç
10. 10. 2007
0 views

ç

Krajweski Chapter 15 16
07. 05. 2008
0 views

Krajweski Chapter 15 16

0916 Branch 0730
02. 10. 2007
0 views

0916 Branch 0730

Lec5 3rd
30. 04. 2008
0 views

Lec5 3rd

pp angel cristian
01. 10. 2007
0 views

pp angel cristian

Guy Wormser
23. 10. 2007
0 views

Guy Wormser

From the Inside Looking Out
02. 05. 2008
0 views

From the Inside Looking Out

26 ple edgecock
17. 10. 2007
0 views

26 ple edgecock

rcdt 061127 05
10. 10. 2007
0 views

rcdt 061127 05

CAISModelGreenSchool
07. 03. 2008
0 views

CAISModelGreenSchool

Ordinamento Germania
16. 11. 2007
0 views

Ordinamento Germania

20041005 Adam Posen
09. 10. 2007
0 views

20041005 Adam Posen

A71 Quezada
01. 11. 2007
0 views

A71 Quezada

CAMET Report
22. 10. 2007
0 views

CAMET Report

workbench
08. 10. 2007
0 views

workbench

melderichtlinien
05. 10. 2007
0 views

melderichtlinien

APAN E culturePresentation 1 21
30. 10. 2007
0 views

APAN E culturePresentation 1 21

ANGELImplementationa tLCCC
01. 10. 2007
0 views

ANGELImplementationa tLCCC

Options Questionnaire 12 11 02
29. 10. 2007
0 views

Options Questionnaire 12 11 02

cancer nutri
04. 10. 2007
0 views

cancer nutri

SYSTEM 3 presentation
27. 09. 2007
0 views

SYSTEM 3 presentation

Souza parallel 3 1
12. 10. 2007
0 views

Souza parallel 3 1

Memorial 2007
18. 10. 2007
0 views

Memorial 2007

SIEl 2006
24. 10. 2007
0 views

SIEl 2006