Rong Gen Cai

Information about Rong Gen Cai

Published on December 1, 2007

Author: Charlie

Source: authorstream.com

Content

Slide1:  First Law of Thermodynamics and Friedmann Equations Rong-Gen Cai (蔡荣根) Institute of Theoretical Physics, CAS (based on hep-th/0501055(JHEP 02 (2005) 050) with S.P. Kim) Slide2:  Einstein’s Equations (1915): {Geometry matter (energy-momentum)} Slide3:  Brief Introduction to Four Laws of Black Hole Thermodynamics From the First Law of Thermodynamics to Friedmann Equations of FRW Universe in Einstein Gravity Friedmann Equations in Gauss-Bonnet Gravity To What Extent it holds? Two Examples: (i) Scalar-Tensor Gravity (ii) f(R) Gravity Contents : Slide4:  a) Brief Introduction to Black Hole Thermodynamics horizon Schwarzschild Black Hole: Mass M More general: Kerr-Newmann Black Holes M, J, Q No Hair Theorem Slide5:  Four Laws of Black Hole mechanics: k: surface gravity, J. Bardeen,B. Carter, S. Hawking, CMP,1973 Slide6:  Four Laws of Black Hole Thermodynamics: Key Points: T = k/2π S= A/4G J. Bekenstein, 1973; S. Hawking, 1974, 1975 Slide7:  On the other hand, for the de Sitter Space (1917): + I I- Gibbons and Hawking (1977): Cosmological event horizons Slide8:  Schwarzschild-de Sitter Black Holes: Black hole horizon and cosmological horizon: First law: Slide9:  Why does GR know that a black hole has a temperature proportional to its surface gravity and an entropy proportional to its horizon area? T. Jacobson is the first to ask this question. Jacobson, Phys. Rev. Lett. 75 (1995) 1260 Thermodynamics of Spacetime: The Einstein Equation of State Slide11:  Friedmann-Robertson-Walker Universe: 1) k = -1 open 2) k = 0 flat 3) k =1 closed b) From the First Law to the Friedmann Equations Slide12:  Friedmann Equations: where: Slide13:  Our goal : Some related works: (1) A. Frolov and L. Kofman, JCAP 0305 (2003) 009 (2) Ulf H. Daniesson, PRD 71 (2005) 023516 (3) R. Bousso, PRD 71 (2005) 064024 Slide15:  Horizons in FRW Universe: Particle Horizon: Event Horizon: Apparent Horizon: Slide16:  Apply the first law to the apparent horizon: Make two ansatzes: The only problem is to get dE Slide17:  Suppose that the perfect fluid is the source, then The energy-supply vector is: The work density is: Then, the amount of energy crossing the apparent horizon within the time interval dt (S. A. Hayward, 1997,1998) Slide18:  By using the continuity equation: Slide19:  What does it tell us: Classical General relativity Thermodynamics of Spacetime Quantum gravity Theory Statistical Physics of Spacetime ? Jacobson, Phys. Rev. Lett. 75 (1995) 1260 Thermodynamics of Spacetime: The Einstein Equation of State Slide20:  c). Higher derivative theory: Gauss-Bonnet Gravity Gauss-Bonnet Term: Slide21:  Black Hole Solution: Black Hole Entropy: (R. Myers,1988, R.G. Cai,1999, 2002, 2004) Slide22:  Ansatz: Slide23:  This time: Slide24:  More General Case: Lovelock Gravity Slide25:  Black Hole solution: Slide26:  Black Hole Entropy: (R.G. Cai, Phys. Lett. B 582 (2004) 237) Slide28:  d) To what extent it holds? Having given a black hole entropy relation to horizon area in some gravity theory, and using the first law of thermodynamics, can one reproduce the corresponding Friedmann equations? Two Examples: (1) Scalar-Tensor Gravity (2) f(R) Gravity Slide29:  (1) Scalar-Tensor Gravity: Consider the action Slide30:  The corresponding Freidmann Equations: On the other hand, the black hole entropy in this theory It does work if one takes this entropy formula and temperature! Slide31:  However, if we still take the ansatz and regard as the source, that is, We are able to “derive” the Friedmann equations. Slide32:  (2) f(R) Gravity Consider the following action: Its equations of motion: Slide33:  The Friedmann equations in this theory where Slide34:  In this theory, the black hole entropy has the form If one uses this form of entropy and the first law of thermodynamics, we fail to produce the corresponding Friedmann equation. Slide35:  However, we note that can be rewritten as in which acts as the effective matter in the universe Slide36:  In this new form, we use the ansatz We are able to reproduce the corresponding Friedmann equations in the f(R) gravity theory. Slide37:  Conclusion and Discussion: We can derive the Friedmann equations in Einstein gravity, Guass-Bonnet gravity, and more general Lovelock gravity using the first law of thermodynamics to the apparent horizon, but not other horizons. (2) But it does not always hold, for example, in scalar-tensor theory and f(R) theory. So far one only considers the FRW universe, clearly it seems so difficult to reproduce corresponding dynamical equations for non-homogenous and non-isotropic universe. Slide38:  Thank You !

Related presentations


Other presentations created by Charlie

Personality Development
17. 11. 2007
0 views

Personality Development

History of Plastics
30. 04. 2008
0 views

History of Plastics

Juniper Networks 22 Nov 2005
28. 04. 2008
0 views

Juniper Networks 22 Nov 2005

CA Communications 02 20 08
18. 04. 2008
0 views

CA Communications 02 20 08

BharAloutlookISRI
17. 04. 2008
0 views

BharAloutlookISRI

direct basis
16. 04. 2008
0 views

direct basis

AnEconomicHistory English
14. 04. 2008
0 views

AnEconomicHistory English

Chap002
13. 04. 2008
0 views

Chap002

Financial Crisis
10. 04. 2008
0 views

Financial Crisis

NATO Today
23. 12. 2007
0 views

NATO Today

TM photo pp ppt
08. 10. 2007
0 views

TM photo pp ppt

2007 seminar 3
12. 10. 2007
0 views

2007 seminar 3

Roalddahl
12. 10. 2007
0 views

Roalddahl

micro credit presentation
15. 10. 2007
0 views

micro credit presentation

lecture 9 12 proteins 2007
16. 10. 2007
0 views

lecture 9 12 proteins 2007

Spanish American War
22. 10. 2007
0 views

Spanish American War

ppw 6 28 04
07. 10. 2007
0 views

ppw 6 28 04

PP2
23. 10. 2007
0 views

PP2

KATRINA TEACHERS GUIDEpr
04. 09. 2007
0 views

KATRINA TEACHERS GUIDEpr

ECA Knowledge Fair
31. 08. 2007
0 views

ECA Knowledge Fair

Automatic Indexing
31. 08. 2007
0 views

Automatic Indexing

ROLE OF JOURNALISTS UNION
31. 08. 2007
0 views

ROLE OF JOURNALISTS UNION

wendy
15. 11. 2007
0 views

wendy

Maximize Access Coverage
28. 11. 2007
0 views

Maximize Access Coverage

Notable Arborists
02. 10. 2007
0 views

Notable Arborists

INDEX OF SEGREGATION
07. 12. 2007
0 views

INDEX OF SEGREGATION

wilhelm2
04. 01. 2008
0 views

wilhelm2

FV1 day1
07. 01. 2008
0 views

FV1 day1

berdai
23. 10. 2007
0 views

berdai

weddings
11. 12. 2007
0 views

weddings

McDowell
29. 10. 2007
0 views

McDowell

usa jl
13. 11. 2007
0 views

usa jl

Construccion de un NOM
24. 10. 2007
0 views

Construccion de un NOM

TuLiP Overview
04. 09. 2007
0 views

TuLiP Overview

tulip
04. 09. 2007
0 views

tulip

HawaiiPresentation
17. 12. 2007
0 views

HawaiiPresentation

ompi tm cas 04 5
23. 10. 2007
0 views

ompi tm cas 04 5

Chapter12
03. 10. 2007
0 views

Chapter12

asian inc
29. 10. 2007
0 views

asian inc

Mat Prod L10
14. 02. 2008
0 views

Mat Prod L10

featurefilm
17. 10. 2007
0 views

featurefilm

EJ Genetic Research
24. 02. 2008
0 views

EJ Genetic Research

badagliacco
24. 02. 2008
0 views

badagliacco

Science and Warfare Lecture 1
26. 02. 2008
0 views

Science and Warfare Lecture 1

AHCIVI 1
27. 02. 2008
0 views

AHCIVI 1

student pressentation mngn
07. 11. 2007
0 views

student pressentation mngn

trucks 4 comm
28. 02. 2008
0 views

trucks 4 comm

bioweapons
04. 03. 2008
0 views

bioweapons

2007EMSVaccinationTr aining
10. 03. 2008
0 views

2007EMSVaccinationTr aining

Mehta diving and the environment
11. 03. 2008
0 views

Mehta diving and the environment

Perform Basis06 A0 en last
25. 03. 2008
0 views

Perform Basis06 A0 en last

wttcsantiago2007
26. 03. 2008
0 views

wttcsantiago2007

Living on Mars
07. 04. 2008
0 views

Living on Mars

lect22 handout
15. 10. 2007
0 views

lect22 handout

pedagogy
04. 09. 2007
0 views

pedagogy

FEE dev IHEP
31. 08. 2007
0 views

FEE dev IHEP

mps break st louis
18. 06. 2007
0 views

mps break st louis

Moving on with Statistics
19. 06. 2007
0 views

Moving on with Statistics

Module 2 TAKS05
19. 06. 2007
0 views

Module 2 TAKS05

microsoft office overview
19. 06. 2007
0 views

microsoft office overview

Math in Middle School
19. 06. 2007
0 views

Math in Middle School

Math Concordance Show
19. 06. 2007
0 views

Math Concordance Show

Mary George
19. 06. 2007
0 views

Mary George

Lower Division
19. 06. 2007
0 views

Lower Division

Lecture Amiens
19. 06. 2007
0 views

Lecture Amiens

lady adalovelace
19. 06. 2007
0 views

lady adalovelace

Kelm
31. 08. 2007
0 views

Kelm

Oct06 CAC Presentation1
18. 06. 2007
0 views

Oct06 CAC Presentation1

NLI 0460
18. 06. 2007
0 views

NLI 0460

nicholas
18. 06. 2007
0 views

nicholas

NCLB Highly Qualified
18. 06. 2007
0 views

NCLB Highly Qualified

NCLB An dE Rate1029
18. 06. 2007
0 views

NCLB An dE Rate1029

MWR 07073
18. 06. 2007
0 views

MWR 07073

mtts product show
18. 06. 2007
0 views

mtts product show

OMSC
18. 06. 2007
0 views

OMSC

PACA 16 de agosto
22. 10. 2007
0 views

PACA 16 de agosto

dh firenze
19. 10. 2007
0 views

dh firenze

gridpp16 servicechallenges
24. 10. 2007
0 views

gridpp16 servicechallenges

lwi
19. 06. 2007
0 views

lwi

AnLiu IDAR07 nocomment
12. 10. 2007
0 views

AnLiu IDAR07 nocomment

VoIPSlides
12. 03. 2008
0 views

VoIPSlides

3 Russia 05
26. 10. 2007
0 views

3 Russia 05

Lynnand Marsha
19. 06. 2007
0 views

Lynnand Marsha

07 0314 k ahuja
28. 09. 2007
0 views

07 0314 k ahuja

PresJMorales
22. 10. 2007
0 views

PresJMorales

Math TEKS K5
19. 06. 2007
0 views

Math TEKS K5

me579 16 internetMC
15. 11. 2007
0 views

me579 16 internetMC

Briars
04. 09. 2007
0 views

Briars

Esm Juny 05 IESE tcm48 42493
01. 10. 2007
0 views

Esm Juny 05 IESE tcm48 42493

CESARE PACIOTTI
10. 10. 2007
0 views

CESARE PACIOTTI

kep engl2007
15. 10. 2007
0 views

kep engl2007

LCG Switzerland Phase 2
19. 10. 2007
0 views

LCG Switzerland Phase 2

stoddart
06. 03. 2008
0 views

stoddart

Ch Kor Symp00
13. 10. 2007
0 views

Ch Kor Symp00

xps seminar jan e
19. 06. 2007
0 views

xps seminar jan e

soda3
03. 01. 2008
0 views

soda3

nys status Report 2006 2007
18. 06. 2007
0 views

nys status Report 2006 2007

JOSB
21. 11. 2007
0 views

JOSB

raffo phdthesis
07. 10. 2007
0 views

raffo phdthesis

parolari
03. 01. 2008
0 views

parolari

bailey
23. 10. 2007
0 views

bailey