# Rong Gen Cai

Published on December 1, 2007

Author: Charlie

Source: authorstream.com

Slide1:  First Law of Thermodynamics and Friedmann Equations Rong-Gen Cai （蔡荣根） Institute of Theoretical Physics, CAS (based on hep-th/0501055(JHEP 02 (2005) 050) with S.P. Kim) Slide2:  Einstein’s Equations (1915): {Geometry matter (energy-momentum)} Slide3:  Brief Introduction to Four Laws of Black Hole Thermodynamics From the First Law of Thermodynamics to Friedmann Equations of FRW Universe in Einstein Gravity Friedmann Equations in Gauss-Bonnet Gravity To What Extent it holds? Two Examples: (i) Scalar-Tensor Gravity (ii) f(R) Gravity Contents : Slide4:  a) Brief Introduction to Black Hole Thermodynamics horizon Schwarzschild Black Hole: Mass M More general: Kerr-Newmann Black Holes M, J, Q No Hair Theorem Slide5:  Four Laws of Black Hole mechanics: k: surface gravity, J. Bardeen,B. Carter, S. Hawking, CMP,1973 Slide6:  Four Laws of Black Hole Thermodynamics: Key Points: T = k/2π S= A/4G J. Bekenstein, 1973; S. Hawking, 1974, 1975 Slide7:  On the other hand, for the de Sitter Space (1917): + I I- Gibbons and Hawking (1977): Cosmological event horizons Slide8:  Schwarzschild-de Sitter Black Holes: Black hole horizon and cosmological horizon: First law: Slide9:  Why does GR know that a black hole has a temperature proportional to its surface gravity and an entropy proportional to its horizon area? T. Jacobson is the first to ask this question. Jacobson, Phys. Rev. Lett. 75 (1995) 1260 Thermodynamics of Spacetime: The Einstein Equation of State Slide11:  Friedmann-Robertson-Walker Universe: 1) k = -1 open 2) k = 0 flat 3) k =1 closed b) From the First Law to the Friedmann Equations Slide12:  Friedmann Equations: where: Slide13:  Our goal : Some related works: (1) A. Frolov and L. Kofman, JCAP 0305 (2003) 009 (2) Ulf H. Daniesson, PRD 71 (2005) 023516 (3) R. Bousso, PRD 71 (2005) 064024 Slide15:  Horizons in FRW Universe: Particle Horizon: Event Horizon: Apparent Horizon: Slide16:  Apply the first law to the apparent horizon: Make two ansatzes: The only problem is to get dE Slide17:  Suppose that the perfect fluid is the source, then The energy-supply vector is: The work density is: Then, the amount of energy crossing the apparent horizon within the time interval dt （S. A. Hayward, 1997,1998) Slide18:  By using the continuity equation: Slide19:  What does it tell us: Classical General relativity Thermodynamics of Spacetime Quantum gravity Theory Statistical Physics of Spacetime ? Jacobson, Phys. Rev. Lett. 75 (1995) 1260 Thermodynamics of Spacetime: The Einstein Equation of State Slide20:  c). Higher derivative theory: Gauss-Bonnet Gravity Gauss-Bonnet Term: Slide21:  Black Hole Solution: Black Hole Entropy: (R. Myers,1988, R.G. Cai,1999, 2002, 2004) Slide22:  Ansatz: Slide23:  This time: Slide24:  More General Case: Lovelock Gravity Slide25:  Black Hole solution: Slide26:  Black Hole Entropy: (R.G. Cai, Phys. Lett. B 582 (2004) 237) Slide28:  d) To what extent it holds? Having given a black hole entropy relation to horizon area in some gravity theory, and using the first law of thermodynamics, can one reproduce the corresponding Friedmann equations? Two Examples: (1) Scalar-Tensor Gravity (2) f(R) Gravity Slide29:  (1) Scalar-Tensor Gravity: Consider the action Slide30:  The corresponding Freidmann Equations: On the other hand, the black hole entropy in this theory It does work if one takes this entropy formula and temperature! Slide31:  However, if we still take the ansatz and regard as the source, that is, We are able to “derive” the Friedmann equations. Slide32:  (2) f(R) Gravity Consider the following action: Its equations of motion: Slide33:  The Friedmann equations in this theory where Slide34:  In this theory, the black hole entropy has the form If one uses this form of entropy and the first law of thermodynamics, we fail to produce the corresponding Friedmann equation. Slide35:  However, we note that can be rewritten as in which acts as the effective matter in the universe Slide36:  In this new form, we use the ansatz We are able to reproduce the corresponding Friedmann equations in the f(R) gravity theory. Slide37:  Conclusion and Discussion: We can derive the Friedmann equations in Einstein gravity, Guass-Bonnet gravity, and more general Lovelock gravity using the first law of thermodynamics to the apparent horizon, but not other horizons. (2) But it does not always hold, for example, in scalar-tensor theory and f(R) theory. So far one only considers the FRW universe, clearly it seems so difficult to reproduce corresponding dynamical equations for non-homogenous and non-isotropic universe. Slide38:  Thank You !

17. 11. 2007
0 views

30. 04. 2008
0 views

28. 04. 2008
0 views

22. 04. 2008
0 views

18. 04. 2008
0 views

17. 04. 2008
0 views

16. 04. 2008
0 views

14. 04. 2008
0 views

13. 04. 2008
0 views

10. 04. 2008
0 views

09. 04. 2008
0 views

23. 12. 2007
0 views

08. 10. 2007
0 views

12. 10. 2007
0 views

12. 10. 2007
0 views

15. 10. 2007
0 views

16. 10. 2007
0 views

22. 10. 2007
0 views

07. 10. 2007
0 views

23. 10. 2007
0 views

04. 09. 2007
0 views

04. 09. 2007
0 views

31. 08. 2007
0 views

31. 08. 2007
0 views

31. 08. 2007
0 views

15. 11. 2007
0 views

28. 11. 2007
0 views

29. 10. 2007
0 views

02. 10. 2007
0 views

07. 12. 2007
0 views

04. 01. 2008
0 views

07. 01. 2008
0 views

23. 10. 2007
0 views

11. 12. 2007
0 views

29. 10. 2007
0 views

13. 11. 2007
0 views

24. 10. 2007
0 views

04. 09. 2007
0 views

04. 09. 2007
0 views

17. 12. 2007
0 views

23. 10. 2007
0 views

03. 10. 2007
0 views

29. 10. 2007
0 views

14. 02. 2008
0 views

17. 10. 2007
0 views

24. 02. 2008
0 views

24. 02. 2008
0 views

26. 02. 2008
0 views

27. 02. 2008
0 views

07. 11. 2007
0 views

28. 02. 2008
0 views

04. 03. 2008
0 views

04. 09. 2007
0 views

10. 03. 2008
0 views

17. 10. 2007
0 views

11. 03. 2008
0 views

25. 03. 2008
0 views

26. 03. 2008
0 views

07. 04. 2008
0 views

15. 10. 2007
0 views

04. 09. 2007
0 views

31. 08. 2007
0 views

18. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

19. 06. 2007
0 views

31. 08. 2007
0 views

24. 10. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

18. 06. 2007
0 views

22. 10. 2007
0 views

19. 10. 2007
0 views

24. 10. 2007
0 views

19. 06. 2007
0 views

12. 10. 2007
0 views

12. 03. 2008
0 views

26. 10. 2007
0 views

19. 06. 2007
0 views

28. 09. 2007
0 views

22. 10. 2007
0 views

19. 06. 2007
0 views

15. 11. 2007
0 views

04. 09. 2007
0 views

01. 10. 2007
0 views

10. 10. 2007
0 views

29. 10. 2007
0 views

15. 10. 2007
0 views

19. 10. 2007
0 views

06. 03. 2008
0 views

13. 10. 2007
0 views

19. 06. 2007
0 views

03. 01. 2008
0 views

18. 06. 2007
0 views

21. 11. 2007
0 views

07. 10. 2007
0 views

03. 01. 2008
0 views

23. 10. 2007
0 views