Sensor Guided Behaviors for a Dynamical Hexapod Ro

Information about Sensor Guided Behaviors for a Dynamical Hexapod Ro

Published on January 4, 2008

Author: brod

Source: authorstream.com

Content

Slide1:  UPenn-CMU Meeting Sensor-Guided Behaviors for a Dynamical Hexapod Robot Sarjoun Skaff Carnegie Mellon University Friday 8 August 2003 Introduction - RHex:  Introduction - RHex Characteristics High-speed, high-energy mobility Aptitude to overcome obstacles Limitations Challenging to operate High transient dynamics Sensor-Guided Behaviors:  Sensor-Guided Behaviors State Estimation for Dynamical Robots Sensor-Guided Behaviors Inertial Guidance Inertia Sensing Related Work:  Related Work Low Frequency Transients High Magnitude Transients Periodical Transients Complex Dynamics Low Magnitude Transients Autonomous Navigation Sensor Based Behavior [Amidi 98] [Wang 02] [Lu 00] [Del Rios 99] Inertia-Guided Behavior - Formulation:  Goal Use on-board gyroscope to maintain heading: Alleviate operator workload Stabilize gait at running speed Assumption - Steering control - Unicycle motion model: Sensor Gyroscope measures angular rate at 300Hz Inertia-Guided Behavior - Formulation vf u x y Inertia-Guided Behavior - Approach:  Inertia-Guided Behavior - Approach Motion model Controller Result Success up to jogging Motion model (running speed): Controller Result Model accurate enough With Inertial Guidance Without Inertial Guidance Sensor-Guided Behaviors:  Sensor-Guided Behaviors State Estimation for Dynamical Robots Sensor-Guided Behaviors Inertial Guidance Inertia Sensing Vision-Guided Behavior – Formulation:  Vision-Guided Behavior – Formulation Goal Use on-board camera to follow line and minimize operator control for this task Sensors Sony DFW-V300 at 30Hz Gyroscope Software (David Maiwand) Line extracted through color segmentation Vision-Guided Behavior – Approach (1):  Motion Model Controller Result Success up to jogging speed Vision-Guided Behavior – Approach (1) Linearize Re-write Vision-Guided Behavior – Approach (2):  Alternative Controller for Running Incorporate rate of rotation from gyroscope Result 30% success rate (failures mainly due to transient dynamics). Lessons Learned Model simplification can enable successful control of complex machines - RHex’s model changes in structure with speed (1st2ndorder) Vision-Guided Behavior – Approach (2) Sensor-Guided Behaviors:  Sensor-Guided Behaviors State Estimation for Dynamical Robots Sensor-Guided Behaviors Inertial Guidance Inertia Sensing Localization(SLAM) - Definitions:  Localization(SLAM) - Definitions State includes robot and landmarks Localization(SLAM) - Illustration:  Localization(SLAM) - Illustration 1. Predict 2. Observe 4. Update k k+1 1 2 3 4 5 3. Associate Data Gain reflects relative confidence in process and measurement accuracy Kalman Filter: Predict  Observe  Update Coverage Setup:  Sensor Camera Data Collected Range and Bearing Motion Model Unicycle Coverage Controller Back and Forth Area Sweeping Coverage Setup Experiment 1 – Vision Sensing:  Experiment 1 – Vision Sensing Two Reasons for Failure When Turning Motion model accuracy deteriorates with transient dynamics New landmarks seen briefly have uncertain location Experiment 2 – Vision & Inertia Fusion:  Experiment 2 – Vision & Inertia Fusion Gyroscope complements vision when Vision fails to capture landmarks Motion model accuracy deteriorates Conclusion:  Conclusion Sensor-based behavior enables automation of tasks of increasing complexity Simplified models can be sufficient for control and state estimation Performance of control and state estimation depends on accuracy of motion model Fusion of Camera and IMU data compensates for the degradation of visual information and motion models Contributors:  Contributors Al Rizzi David Maiwand Howie Choset Appendix – Measurement Model:  Appendix – Measurement Model Problem Measurement expressed in range and bearing, not in (x, y) coordinates Solution Linearize observation ? Appendix – Kalman Filter Equations:  Appendix – Kalman Filter Equations System Predict Observe Update Linear System Sensor Space Mean Spread in Work Space Spread in Sensor Space

Related presentations


Other presentations created by brod

So You Think Can Sell Candy Quiz
05. 11. 2007
0 views

So You Think Can Sell Candy Quiz

Follow the Yellow Brick Road
19. 02. 2008
0 views

Follow the Yellow Brick Road

08 turkey
23. 11. 2007
0 views

08 turkey

EAF0112
03. 10. 2007
0 views

EAF0112

lect 18 groundwater
09. 10. 2007
0 views

lect 18 groundwater

Stress BSPIN
03. 12. 2007
0 views

Stress BSPIN

hugh mc enaney
04. 12. 2007
0 views

hugh mc enaney

Administrative Notes
06. 12. 2007
0 views

Administrative Notes

Muertos
05. 11. 2007
0 views

Muertos

Disney01
12. 11. 2007
0 views

Disney01

BMI1 FS05 Class09 MRI Theory
14. 11. 2007
0 views

BMI1 FS05 Class09 MRI Theory

inv button animal
16. 11. 2007
0 views

inv button animal

COP4331 Debugger
27. 11. 2007
0 views

COP4331 Debugger

osofsky slides
05. 11. 2007
0 views

osofsky slides

robot Final
31. 12. 2007
0 views

robot Final

Citizens Academy
01. 01. 2008
0 views

Citizens Academy

fast flux 0 2
28. 11. 2007
0 views

fast flux 0 2

Wyse 42706
07. 01. 2008
0 views

Wyse 42706

003
21. 11. 2007
0 views

003

c2 Criptografia
05. 01. 2008
0 views

c2 Criptografia

Mars Orbit Rendezvous
06. 11. 2007
0 views

Mars Orbit Rendezvous

CopyrightClass04 s08
27. 02. 2008
0 views

CopyrightClass04 s08

1142
28. 02. 2008
0 views

1142

frangi
03. 01. 2008
0 views

frangi

BGU HIT
04. 03. 2008
0 views

BGU HIT

0405BioterrorismMatt hews
11. 03. 2008
0 views

0405BioterrorismMatt hews

CNIBLibraryServices
12. 03. 2008
0 views

CNIBLibraryServices

CarTracker
14. 03. 2008
0 views

CarTracker

Lisbon presentation final
18. 03. 2008
0 views

Lisbon presentation final

c05p00026
27. 03. 2008
0 views

c05p00026

Harwood
30. 03. 2008
0 views

Harwood

Beech Acres Coaching Model
13. 04. 2008
0 views

Beech Acres Coaching Model

AFD 071010 047
05. 11. 2007
0 views

AFD 071010 047

Rapanos FinalVersion
03. 01. 2008
0 views

Rapanos FinalVersion

serey
19. 11. 2007
0 views

serey

prednaska03
28. 11. 2007
0 views

prednaska03

RicardoGralhoz Seminario2
29. 12. 2007
0 views

RicardoGralhoz Seminario2

The Santa Ana Mountains
02. 10. 2007
0 views

The Santa Ana Mountains

hokudai
15. 11. 2007
0 views

hokudai

Korbel Volker visit Moscow
27. 09. 2007
0 views

Korbel Volker visit Moscow

v comm
30. 12. 2007
0 views

v comm

howell
13. 11. 2007
0 views

howell

cismsem1
02. 11. 2007
0 views

cismsem1

elterninfo rom 2007
01. 10. 2007
0 views

elterninfo rom 2007

Saddleworth Rangers Tour
27. 12. 2007
0 views

Saddleworth Rangers Tour

02 TSQL v4
29. 11. 2007
0 views

02 TSQL v4

nnbar cpt
17. 12. 2007
0 views

nnbar cpt