sigmod01

Information about sigmod01

Published on January 23, 2008

Author: Michela

Source: authorstream.com

Content

Proxy-Server Architectures for OLAP:  Proxy-Server Architectures for OLAP Panos Kalnis, Dimitris Papadias THE HONG KONG UNIVERSITY OF SCIENCE AND TECHNOLOGY The Problem:  The Problem Data warehouses: Large repositories of historical summarized information Distributed: Centralized or decentralized. Static structure! WWW: new opportunities to access warehouses. Example:Stock market data Professional brokers: Access directly the warehouse by special purpose OLAP software Individual investors around the world: Use web browsers. Slow network? Server overloading? Caching? Internet Singapore Hong Kong Tokyo London Stock Market Warehouse OLAP clients OLAP Cache Servers (OCS):  OLAP Cache Servers (OCS) Similar to WWW Proxy-Servers Geographically spanned and connected through an arbitrary network They cache results from OLAP queries Can derive new results from the cached data Clients connect to an OCS. If the OCS cannot answer, the query is redirected to a neighbor OCS or to the warehouse Result: Lower network cost, better scalability, lower response time Internet London Stock Market Warehouse OLAP clients OCS OCS OCS vs. WWW Proxy-Servers:  OCS vs. WWW Proxy-Servers OCS has computational capabilities. The cache admission and replacement policies are optimized for OLAP operations. OCS can update its contents incrementally, instead of invalidating the cached data Background:  Background Data Cube Lattice: Interdependencies among views SELECT P_id, T_id, SUM(Sales) FROM data GROUP BY P_id, T_id Client-Server OLAP Caching Watchman: Semantic caching Dynamat: Stores fragments Caching chunks OCSs may use any of these methods The prototype caches entire views System Architecture:  System Architecture Centralized: Query optimization and cache control in a central site (intranet) Semi-centralized: Only query optimization in central site. Each OCS controls its local cache Autonomous: All decisions are taken locally (internet) Multiple levels of caching Cooperation among OCSs Physical organization and fragmentation may differ in each OCS Query Optimizer:  Query Optimizer A client sends a query q Autonomous policy: OCS has the exact answer OCS cannot answer q OCS can derive q Cost = Read + Transfer Query Optimizer (cont.):  Query Optimizer (cont.) Autonomous: Scalable, easy to implement, high availability. Large, unstructured, dynamic environments BUT may produce inefficient plans Centralized (and semi-centralized): A central site has global information for all OCSs. Creates the execution and routing plan for all queries Low availability, low scalability Suitable for intranets Caching Policy: Autonomous:  Caching Policy: Autonomous Lower Benefit First: Considers interdependencies, but: Cost() difficult to calculate; If v cannot be answered locally we assume that it is answered by the warehouse The complexity of LBF grows quadratically with the number of materialized views We evict a set from the cache if the combined benefit < benefit(u). Select the victim set: Similar idea to [HRU96] Caching Policy: Centralized:  All the decisions are taken at the central site Centralized policy uses Smaller Penalty First Experiments show that the difference between SPF and LBF is not significant In general: A bad decision of the caching algorithm does not affect the performance significantly BUT a bad decision of the optimizer has significant impact Caching Policy: Centralized Updates:  Updates Changes are propagated periodically to the warehouse. It computes deltas for its materialized views No down time for the OCSs OCS updates its cache on-demand: Invalidate vs. incrementally update Deltas are treated as normal data Deltas are evicted at the end of the update period Non-updated results are also evicted Experimental Setup:  Experimental Setup APB and TPC-H Cmax = max Cache as a percentage of the entire cube 1500 queries at each OCS OCS configuration Client-Side-Cache Worst case Effect of Network Cost:  Effect of Network Cost 3 OCSs – we vary the speed of the links to the DW In slow networks, OCSs utilize the contents of their neighbors In fast networks, many queries reach the warehouse, because the computation cost is lower DCSR vs. Cmax Warehouse Hit Ratio vs. Cmax Autonomous vs. Semi-centralized:  Autonomous vs. Semi-centralized Centralized  Semi-Centralized High tightness or many OCSs  Autonomous  Semi-Centralized 100 OCSs Conclusions:  Conclusions OCS: Architecture for caching OLAP results Beneficial for ad-hoc, geographically spanned and possibly mobile users, who sporadically need to access a warehouse Complimentary to both client-side-cache systems and distributed OLAP approaches Future work: Prototype on top of a DBMS, support of multiple DWs, finer granularity of cached data, special queries.

Related presentations


Other presentations created by Michela

2004 Focal product info
09. 01. 2008
0 views

2004 Focal product info

MktgIII
11. 01. 2008
0 views

MktgIII

401 01a g
11. 01. 2008
0 views

401 01a g

NYSTP Strategic Plan
12. 01. 2008
0 views

NYSTP Strategic Plan

Aircraft ppt
17. 01. 2008
0 views

Aircraft ppt

royer streetdrugs
18. 01. 2008
0 views

royer streetdrugs

CustomerTrng2006
19. 01. 2008
0 views

CustomerTrng2006

humanorigins
21. 01. 2008
0 views

humanorigins

MINISTERIAL BRIEFING
22. 01. 2008
0 views

MINISTERIAL BRIEFING

Doug Cook 1003 2005
09. 01. 2008
0 views

Doug Cook 1003 2005

Interviewing
29. 01. 2008
0 views

Interviewing

SCDI
04. 02. 2008
0 views

SCDI

2007Midterm FinalPresentation
06. 02. 2008
0 views

2007Midterm FinalPresentation

chedister
14. 02. 2008
0 views

chedister

ppt00019
05. 02. 2008
0 views

ppt00019

leconte2004
28. 01. 2008
0 views

leconte2004

holyland
25. 02. 2008
0 views

holyland

Koss
28. 02. 2008
0 views

Koss

NFU Patrick Bond presentation
20. 02. 2008
0 views

NFU Patrick Bond presentation

koizumi fed budget
05. 03. 2008
0 views

koizumi fed budget

legacy show
11. 03. 2008
0 views

legacy show

ClassFaceBookTemplat eR1
15. 03. 2008
0 views

ClassFaceBookTemplat eR1

MayhemMonkeysFinal2
19. 03. 2008
0 views

MayhemMonkeysFinal2

Canada LB
21. 03. 2008
0 views

Canada LB

Att13 HW Use in Cement Kiln
11. 02. 2008
0 views

Att13 HW Use in Cement Kiln

4p10
03. 04. 2008
0 views

4p10

Paralympics
16. 04. 2008
0 views

Paralympics

DICA Audit presentation Feb 2007
10. 01. 2008
0 views

DICA Audit presentation Feb 2007

13089
08. 05. 2008
0 views

13089

100703 1030 juliano
30. 01. 2008
0 views

100703 1030 juliano

powerpointA
22. 01. 2008
0 views

powerpointA

Wescon2003Wong
04. 02. 2008
0 views

Wescon2003Wong

Roundtable 2004 Butters
25. 01. 2008
0 views

Roundtable 2004 Butters

Karachi presentation
16. 01. 2008
0 views

Karachi presentation

Mekayla Manning
12. 02. 2008
0 views

Mekayla Manning

JJalilian Marian PPTMac
09. 01. 2008
0 views

JJalilian Marian PPTMac